Spelling suggestions: "subject:"ecuaciones diferencial"" "subject:"ecuaciones diferencialmente""
131 |
Modelización y simulación de dispositivos micrométricos basados en estructuras espaciales de solitones ópticosGarcía March, Miguel Ángel 07 May 2008 (has links)
En la presente Tesis se utilizan las herramientas de la teoría de grupos discretos, de la física del estado sólido y de la dinámica no lineal para estudiar los nuevos fenómenos que se pueden obtener al combinar la periodicidad y la no linealidad para controlar el comportamiento de la luz. Los modelos matemáticos obtenidos consisten en ecuaciones diferenciales no lineales en derivadas parciales tipo Schrödinger que presentan variaciones periódicas en la parte lineal y no lineal. En los sistemas con simetría rotacional discreta el estudio de estos modelos se ha centrado en el concepto clave de pseudomomento angular mientras que en los sistemas periódicos se ha explotado la analogía conlos sistemas estudiados en la física del estado sólido.
Adicionalmente, se han desarrollado métodos de resolución numérica capaces de simular la propagación electromagnética en sistemas no lineales periódicosbidimensionales. Además se han simulado anipulaciones de propiedades de la luz que sirvan como base a dispositivos micrométricos pasivos (como memorias netamente ópticas) o activos (capaces de realizar operaciones booleanas)
basadas en estructuras solitónicas sobre las que se pueden definir propiedades y dinámica magnética. El objetivo último es la simulación de dispositivos capaces de ser fabricados experimentalmente. / García March, MÁ. (2008). Modelización y simulación de dispositivos micrométricos basados en estructuras espaciales de solitones ópticos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2011
|
132 |
Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of ValenciaArenas Tawil, Abraham José 24 May 2010 (has links)
El objetivo de esta memoria se centra en primer lugar en la modelización del comportamiento de enfermedades estacionales mediante sistemas de ecuaciones diferenciales y en el estudio de las propiedades dinámicas tales como positividad, periocidad, estabilidad de las soluciones analíticas y la construcción de esquemas numéricos para las aproximaciones de las soluciones numéricas de sistemas de ecuaciones diferenciales de primer orden no lineales, los cuales modelan el comportamiento de enfermedades infecciosas estacionales tales como la transmisión del virus Respiratory Syncytial Virus (RSV).
Se generalizan dos modelos matemáticos de enfermedades estacionales y se demuestran que tiene soluciones periódicas usando un Teorema de Coincidencia de Jean Mawhin. Para corroborar los resultados analíticos, se desarrollan esquemas numéricos usando las técnicas de diferencias finitas no estándar desarrolladas por Ronald Michens y el método de la transformada diferencial, los cuales permiten reproducir el comportamiento dinámico de las soluciones analíticas, tales como positividad y periocidad.
Finalmente, las simulaciones numéricas se realizan usando los esquemas implementados y parámetros deducidos de datos clínicos
De La Región de Valencia de personas infectadas con el virus RSV. Se confrontan con las que arrojan los métodos de Euler, Runge Kutta y la rutina de ODE45 de Matlab, verificándose mejores aproximaciones para tamaños de paso mayor a los que usan normalmente estos esquemas tradicionales. / Arenas Tawil, AJ. (2009). Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8316
|
133 |
Nuevos métodos y algoritmos de altas prestaciones para el cálculo de funciones de matricesRuiz Martínez, Pedro Antonio 17 February 2020 (has links)
Tesis por compendio / [ES] El objetivo de esta tesis es el desarrollo de algoritmos e implementaciones innovadoras de altas prestaciones (HPC) para la computación de funciones de matrices basadas en series de polinomios matriciales. En concreto, se desarrollarán algoritmos para el cálculo de las funciones matriciales más utilizadas: la exponencial, el seno y el coseno.
El estudio de los polinomios ortogonales matriciales es un campo emergente cuyo avance está alcanzando importantes resultados tanto desde el punto de vista teórico como práctico. Las ¿últimas investigaciones realizadas por el doctorando, junto a los miembros del grupo de investigación al que está vinculado, High Performance Scientific Computing (HiPerSC), revelan por qué los polinomios matriciales desempeñan un papel fundamental en la aproximación de funciones de matrices, proporcionando propiedades muy interesantes. En esta tesis se han desarrollado nuevos algoritmos de alto rendimiento basados en series polinomiales matriciales. En particular, se han implementado algoritmos para el cálculo de la exponencial, el seno y el coseno de una matriz usando las series matriciales polinomiales de Taylor y de Hermite. Además, se han proporcionado cotas del error cometido en las aproximaciones calculadas, proporcionando además los parámetros teóricos y experimentales óptimos de dichas aproximaciones. Los algoritmos finales han sido comparados con otras implementaciones del estado del arte para probar la mejora que presentan en cuanto a eficiencia y prestaciones.
Los resultados obtenidos a lo largo de la investigación y presentados en esta memoria han sido publicados en varias revistas de alto nivel y se han presentado como ponencias en diversas ediciones del congreso internacional Mathematical Modelling in Engineering & Human Behaviour para dotarlas de la mayor difusión posible. Por otra parte, los códigos informáticos implementados han sido puestos a disposición de la comunidad científica internacional a través de nuestra página web http://hipersc.blogs.upv.es. / [CA] L'objectiu d'aquesta Tesi és el desenvolupament d'algoritmes i implementacions innovadores d'altes prestacions (HPC) per a la computació de funcions de matrius basades en sèries de polinomis matricials. En concret, es desenvoluparan algoritmes per al càlcul de les funcions matricials més emprades: l'exponencial, el sinus i el cosinus.
L'estudi dels polinomis ortogonals matricials és un camp emergent, el creixement del qual està aconseguint importants resultats tant des del punt de vista teòric com pràctic. Les últimes investigacions realitzades pel doctorand junt amb els membres del grup d'investigació on està vinculat, High Performance Scientific Computing (HiPerSC), revelen per què els polinomis matricials exerceixen un paper fonamental en l'aproximació de funcions de matrius, proporcionant propietats molt interessants. En aquesta Tesi s'han desenvolupat nous algoritmes d'alt rendiment basats en sèries polinomials matricials. En particular, s'han implementat algoritmes per al càlcul de l'exponencial, el sinus i el cosinus d'una matriu usant les sèries matricials polinomials de Taylor i d'Hermite. A més, s'han proporcionat cotes de l'error comès en les aproximacions calculades, proporcionant a més els paràmetres teòrics i experimentals òptims d'aquestes aproximacions. Els algoritmes finals han estat comparats amb altres implementacions de l'estat de l'art per a provar la millora que presenten en termes d'eficiència i prestacions.
Els resultats obtinguts al llarg de la investigació i presentats en aquesta memòria han estat publicats en diverses revistes d'alt nivell i s'han presentat com a ponències en diferents edicions del congrés internacional Mathematical Modelling in Engineering \& Human Behaviour per a dotar-les de la major difusió possible. D'altra banda, s'han posat els codis informàtics implementats a disposició de la Comunitat Científica Internacional mitjançant la nostra pàgina web http://hipersc.blogs.upv.es. / [EN] The aim of this thesis is the development of high performance computing (HPC) innovative algorithms and implementations for computing matrix functions based on matrix polynomials series. Specifically, algorithms for the calculation of the most commonly-used
functions, the exponential, sine and cosine have been developed.
The study of orthogonal matrix polynomials is an emerging field whose growth is achieving important results both theoretically and practically. The last investigations made by the doctoral student, together with the members of the research group, High Performance Scientific Computing (HiPerSC), he is linked, reveal why the matrix polynomials play a fundamental role in the approximation of matrix functions, providing very interesting properties.In this thesis new high-performance algorithms based on matrix polynomial series have been developed. In particular, algorithms for computing the exponential, sine and cosine of a matrix using Taylor and Hermite matrix polynomial series have been implemented.In addition, the error bounds for the approximations calculated have been provided and optimal theoretical and experimental parameters for such approximations have also been provided. Final algorithms have been compared to other state of the art implementations to test the improvement obtained in terms of efficiency and performance.
The results obtained during the investigation and presented in this memory have been published in several high-level journals and presented as papers at various editions of the International Congress Mathematical Modelling in Engineering & Human Behaviour to give them the widest possible distribution. On the other hand, implemented computer codes have been made freely available to the international scientific community at our web page http://hipersc.blogs.upv.es. / Ruiz Martínez, PA. (2020). Nuevos métodos y algoritmos de altas prestaciones para el cálculo de funciones de matrices [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/137035 / Compendio
|
Page generated in 0.0925 seconds