• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reaktiv effektkompensering i Umeå Energis elnät / Compensation of reactive power in the power grid of Umeå Energi AB

Sandström, Linus January 2017 (has links)
På grund av ökad kablifiering i Umeå Energis nät samt ett avtal med regionnätsägaren som kommer att prissätta inmatning av reaktiv effekt i anslutningspunkten, har behovet av kompensering av reaktiv effekt aktualiseras. Denna rapport skall undersöka de reaktiva effektflödena i 145 kV-nätet, undersöka optimal kompenseringsutrustning samt optimal placering av kompensering. De reaktiva effektflödena i nätet beräknades både med och utan projekterad kablifiering. Vilket skulle ge upphov till ca 30 respektive 60 MVAr. De första jämfördes med timvärden från anslutningspunkten till regionnätsägaren. Detta verkar korrespondera med den maximala reaktiva effektproduktionen under 2016. Med denna jämförelse samt beräkningar av nätet efter kablifiering, gjordes en uppskattning på framtida kompenseringsbehov. Under undersökningen har det visat sig att två stycken Variabla shunt reaktorer skulle vara en lämplig lösning för detta problem. Tre lösningsförslag tas upp i denna rapport. Lösningsförslag 1: 1st 55-62 MVAr VSR at F-Stn 15 och 1st (Storlek bestäms senare) MVAr i F-Stn 30. Lösningsförslag 2: 30-40 MVAr VSR i F-Stn 15 samt 1st 30-40 MVAr i F-Stn 30. Lösningsförslag 3: 1st 30-40 MVAr VSR i FStn 15 samt 1st 30-40 MVAr i F-Stn 10. / Due to an increase in cables and voltage levels in Umeå Energi’s power grid and consequently an increase in reactive power production, coupled with an agreement with the regional power grid owner whom will start to charge money for reactive power flow up into their grid. And thus the need for compensation of reactive power has been actualized. The reactive powerflow in the grid was calculated with and without planned cable installations. Which would give rise to about 30 and 60 MVAr respectivly. The first of the two was compared to the measurement of the reactive power flow at the connection point of the regional grid owner. This seems to correspond to the maximum reactive power production under 2016. Using this comparison with the calculations of the grid, post cable installation, an estimation was made regarding the future compensation needs. During this inquiry it became clear that two Variable Shunt Reactors would be the optimal solution for this problem. Three solutions has been produced in this report. Solution 1: 1 55-62 MVAr VSR in Substation 15 and 1 TBD MVAr VSR in Substation 30. Solution 2: 1 30-40 MVAr VSR in Substation 15 and 1 30-40 MVAr VSR in Substation 30. Solution 3: 1 30-40 MVAr VSR in Substation 15 and 1 30-40 MVAr VSR in Substation 10.
2

Vätgassystem som reservkraft och effektkompenserande medel : Modellering och ekonomisk värdering av ett potentielt vätgassystem till ett sjukhus

Ansander, Rikard January 2022 (has links)
In this report, a hydrogen system was investigated to supply a hospital with reserve power and power compensation. Through modelling, four different configurations of hydrogen systems and five different levels of maximum power intake from the electrical grid was evaluated. The evaluation was based on the economical feasibilty and climate footprint of the four different systems. The optimal hydrogen system that was suggested in this report was consisting of Proton electrolyte membrane(PEM) electrolysers, PEM fuel cells and solar panels that powered the elctrolysers for hydrogenproduction. The optimal power intake level was 2000 kW. The suggested system (hydrogen system 3) was never profitable and was shown using the economical metrics Net presentvalue and Levelised cost analysis. Though the hydrogen system had a positive cash flow, it had a large investment cost making it never profitable during the lifetime of the project, that was set to ten years. The total investment cost for the system amounted to 133 million swedish crowns and the cost of the energy used from the PEM fuel cells amounted to 0,536 thousand swedish crowns per kWh. This was due to the fuel cells since they were dimensioned for the reserve power as well which demanded a high power output, thus increasing the investment cost. Another reason for the high investement cost was the PEM technology that was used for the electrolysers and fuel cells. It is an immature technology but it stands out as leading technology for improvements and being important to reach an energy system that is sustainable. The amount of saved carbondioxide equivalents compared to the normal case when a hydrogen system was not in use, amounted to 74 tons.
3

Acceptansgränsen för solceller i lågspänningsnät : Kan den ökas?

Willén, Oscar January 2015 (has links)
Microproduction, also called distributed generation, is something that has become more and more popular in the electric grid. Microproduction can however lead to unacceptable performance if several units are installed in the same low voltage network. It is therefore good to know a limit where the performance of the low voltage network becomes unacceptable based on given parameters. This limit is usually called hosting capacity. In this report the hosting capacity with respect to voltage and current have been studied in three low voltage networks which are located in Falu Elnäts concession area. This has been done by simulations in a GIS-program where critical times of the grid have been simulated. When the hosting capacity had been decided attempts have been made to increase the hosting capacity with four different measures. The measures examined are line gain, tap changer, reactive compensation and voltage regulation in the form of MPV. For the investigated network the hosting capacity varied virtuously. For all three grids were too high voltage during low load with maximum power production however the reason that the performance of the grid became unacceptable. The reasons that the voltage became unacceptable at different amounts of microproduction depends mainly on four things. These were the voltage in the substation, the amount of customers in the grid, the quality of the lines and the line length between the customer and substation. The best measure to increase the hosting capacity in a net is line gain in the most of the cases. Tap changer and the voltage regulator MPV are however two other measures that are recommended, but mainly as temporary solutions. Reactive compensation on the other hand is something that isn’t recommended based on this report.
4

Elkvalitet i industrinät : Snabba spänningsvariationerns påverkan på elektrisk utrustning / Power quality in industrial networks : Voltage fluctuations effect on electrical equipment

Sköld, Joakim January 2021 (has links)
Elkvalitet beror på flera olika faktorer, exempelvis kortvarig spänningshöjning, kortvarig spänningssänkning, snabba spänningsvariationer (flimmer), spänningssprång, transienter, övertoner eller spänningsosymmetri. Den vanligaste åtgärden för att förbättra elkvaliteten i ett industrinät med ljusbågsugn och höga nivåer av snabba spänningsvariationer är att använda sig av reaktiv effektkompensering.  Denna studie undersöker snabba spänningsvariationers eventuella påverkan på elektrisk utrustning, både gällande användning och livslängd. Vidare undersöks även elkvaliteten i Sandviks industrinät där elektrisk utrustning upplevs ha blivit defekt tidigt under dess livslängd. Detta för att finna åtgärder som kan förbättra elkvaliteten för industrinätet, där en ljusbågsugn används i produktionen. I studien har mätdata gällande elkvalitet från Sandvik jämförts med mätdata från andra industrier vilket sedan analyserat utifrån gällande elkvalitetsnormer. Data om vilken typ av utrustning som kan ha påverkats och information om hur elnätsföretag upplever industriers påverkan på elkvalitet har samlats in genom intervjuer med personal på Sandvik och Vattenfall. Även tidigare forskning behandlas i denna studie. Resultatet visar att Sandviks elkvalitet påverkas av när ljusbågsugnen körs. Flimmernivån är den elkvalitetsstörning som återkommande överstiger normen vid anslutningspunkten av utrustning som tidigt blivit defekt. Tidigare forskning visar att användandet av utrustning kan påverkas av snabba spänningsvariationer till exempel i form av mindre hastighetsförändringar i motorer. I jämförelsen mellan Sandvik och de andra industriernas mätdata framkommer bland annat att höga flimmernivåer är vanligt förekommande i industrinät med ljusbågsugn. För att åtgärda Sandviks flimmernivåer och förbättra deras elkvalitet kan en reaktiv effektkompensering i form av en STATCOM installeras. Det finns inte forskning i tillräcklig stor grad för att kunna dra säkra slutsatser gällande hur snabba spänningsvariationer påverkar elektrisk utrustnings livslängd. Det finns dock forskning som indikerar att så är fallet. Denna studies insamlade data leder inte heller till några säkra slutsatser gällande detta men tydliggör att nuvarande testprocedurer om utrustnings immunitet mot snabba spänningsvariationer inte går att jämföra med de verkliga förhållandena i ett industrinät. Slutsatsen är även att fler studier i ämnet krävs. / Power quality depends on several different factors, such as voltage sags, voltage dips, voltage fluctuation (flicker), rapid voltage changes, transients, harmonics or voltage asymmetry. To improve the power quality in an industrial network one common mitigation is reactive power compensation.     This study examines the possible effects of voltage fluctuations on electronic equipment, both in terms of use and service life. Furthermore, Sandvik's power quality in their industrial network is also examined, where electronic equipment is perceived to have become defective early in its service life. To improve the power quality the goal is to find suitable mitigation for the arc furnace in the industrial network. In this study, the power quality at Sandvik was compared with the power quality from similar industries and analyzed based on current power quality standards. Through interviews with staff at Sandvik and Vattenfall data was provided regarding which type of equipment that may have been affected and information on how electricity network companies experience the impact from industries on power quality. Previous research is also covered in this study. The result shows that the power quality at Sandvik is affected when the arc furnace is active. The flicker level is the power quality disturbance that repeatedly exceeds the norm at the connection point of equipment that has become defective at an early stage. Previous research shows that the use of equipment can be affected by voltage fluctuations, for example in the form of minor speed changes in motors. The comparison between Sandvik and the similar industries reveals that industrials networks with an arc furnace often is affected by high flicker levels. By installing a reactive power compensator, in form of a STATCOM, the high flicker level of Sandvik’s industrial network can be mitigated. There is not enough research to be able to draw definite conclusions if voltage fluctuation affects the lifespan of electronic equipment. However, there is research that indicates that this is the case. The data collected in this study also do not lead to any definite conclusions regarding this but clarifies that current test procedures on equipment immunity to voltage fluctuations cannot be compared with the actual conditions in an industrial network. The conclusion is also that more studies on the subject are required.
5

Analysis of Prerequisites for Connection of a Large-Scale Photovoltaic System to the Electric Power Grid

Lilja, Fanny January 2021 (has links)
The deployment of large-scale photovoltaic (PV) systems is rising in the Swedish power system, both in quantity and in system size. However, the intermittent characteristics of the PV production raises questions concerning the stability in the electric power grid, and power output fluctuations from the PV systems can lead to voltage quality issues. Hence, the distribution system operator E.ON Energidistribution and the solar energy developer company Solkompaniet are interested in investigating potential challenges and possibilities related to the integration of large-scale PV systems in the electric power grid. This thesis studies fast voltage variations in the electric power grid due to output fluctuations from large-scale PV systems, and examines the possibility to mitigate the voltage variations by reactive power support strategies in the PV inverters. Four studies are carried out to investigate the prerequisites for establishing large-scale PV systems. Firstly, a worst-case study considering eight existing substations in the electric power grid as well as a new substation is carried out, to examine the impact of different parameters on the voltage variations. Parameters such as transformer operation mode, location of the point of connection, switching mode and load capacity are compared in the study. Further, time series calculations are done to investigate the voltage variations over one year, and a study with an oversized PV system is done to investigate the possibility for increasing the PV capacity without grid reinforcements. Lastly, a study is performed with reactive power compensation from the PV inverters to examine the possibility to maintain a stabilized voltage level at the point of connection. The studies are performed in E.ONs network model in the power system simulator software PSS/E, with data for the transmission grid, the regional grid, and parts of the distribution grid included. PV systems with a rated capacity from 32 MWp and upwards are connected to substations in the regional grid, where fast voltage variations on nominal voltage levels of 20/10 kV are studied and evaluated from the perspective of the power producer. From this thesis, it can be concluded that neither of the implemented studies results in voltage variations that violate E.ONs technical requirements on fast voltage variations in the point of connection. Further, the results from the worst-case study show the importance of analysing the specific system of interest when connecting PV systems, since the properties of the existing system have an impact on the voltage variations. The time series calculations show that the voltage variations over a time period of one year are highly influenced by the PV production and the load capacity in the substation, and the study with an oversized PV system shows the possibility for increasing the PV capacity without curtailing large amounts of active power. Finally, the study with reactive power compensation concludes that grid support strategies in the PV inverters may be a key solution for making optimal use of the existing electric power grid and enabling the continued expansion of large-scale PV systems in the Swedish power system. / Utbyggnaden av storskaliga solcellsanläggningar (PV) ökar i det svenska kraftsystemet, både i kvantitet och i systemstorlek. De intermittenta egenskaperna hos energiproduktionen väcker emellertid frågor angående stabiliteten i elnätet, och effektförändringar från anläggningarna kan leda till spänningskvalitetsproblem. Därför är distributionssystemoperatören E.ON Energidistribution och solenergiföretaget Solkompaniet intresserade av att undersöka potentiella utmaningar och möjligheter relaterade till integrationen av storskaliga solcellsanläggningar i elnätet. Detta examensarbete studerar snabba spänningsvariationer i elnätet till följd av effektförändringar från storskaliga solcellsanläggningar, och undersöker möjligheten att mildra spänningsvariationerna genom strategier för reaktiv effektreglering i växelriktare.  Fyra studier genomförs för att undersöka förutsättningarna för att etablera storskaliga solcellsanläggningar. För det första genomförs en värsta-fallstudie med beaktande av åtta befintliga stationer i elnätet samt en ny station, för att undersöka olika parametrars påverkan på spänningsvariationerna. Parametrar som transformatorns driftläge, plats för anslutningspunkten, omkopplingsläge och lastkapacitet jämförs i studien. Vidare görs tidsserieberäkningar för att undersöka spänningsvariationerna över ett år, och en studie med en överdimensionerad solcellsanläggning görs för att undersöka möjligheten att öka solcellskapaciteten utan elnäts- förstärkningar. Slutligen genomförs en studie med reaktiv effektkompensation från växelriktare för att undersöka möjligheten att upprätthålla en stabiliserad spänningsnivå i anslutningspunkten. Studierna utförs i E.ONs nätverksmodell i programvaran PSS/E för kraftsystemsimuleringar, med data för transmissionsnätet, regionnätet och delar av distributionsnätet inkluderat. Solcellsanläggningar med en nominell kapacitet från 32 MWp och uppåt ansluts till stationer i regionnätet, där snabba spänningsvariationer på nominella spänningsnivåer om 20/10 kV studeras och utvärderas ur kraftproducentens perspektiv. Från resultaten kan man dra slutsatsen att ingen av de genomförda studierna resulterar i spänningsvariationer som överskrider E.ONs tekniska krav på snabba spänningsvariationer i anslutningspunkten. Vidare visar resultaten från värsta-fallstudien vikten av att analysera det specifika systemet vid anslutning av solcellsanläggningar, eftersom egenskaperna hos det befintliga systemet har en inverkan på spänningsvarationerna. Tidsserieberäkningarna visar att spänningsvariationerna över en tidsperiod av ett år påverkas starkt av både energiproduktionen och lastkapaciteten i stationen, och studien med en överdimensionerad solcellsanläggning visar på möjligheten att öka den nominella kapaciteten utan att spilla stora mängder aktiv effekt. Slutligen ger studien med reaktiv effektkompensation slutsatser om att strategier i växelriktare kan vara en möjlig lösning för att utnyttja det befintliga elnät optimalt och möjliggöra en fortsatt expansion av storskaliga solcellsanläggningar i det svenska kraftsystemet.

Page generated in 0.0799 seconds