• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionering och optimering av ett PV-system för en elintensiv industribyggnad i södra Norrland : En fallstudie med avseende på teknik, ekonomi och klimat

Skeppstedt, Tobias January 2018 (has links)
Utbyggnaden av PV‑system (solcellsanläggningar) har ökat exponentiellt under senare år, både internationellt och i Sverige. Några av anledningarna till detta är framförallt att tekniken blir billigare och allt mer effektiv, samt att tekniken ses som en av lösningarna på problematiken kring klimatförändringar. Trots detta behövs ändå i många fall ekonomiska bidrag för att solcellsanläggningar ska bli lönsamma, och även om solceller inte ger upphov till utsläpp av växthusgaser i driftsfasen så är emissionerna betydande i tillverkningsprocessen av systemkomponenterna. I denna fallstudie framläggs en elintensiv industribyggnad i södra Norrland som föremål för att undersöka tekniska, ekonomiska och klimatrelaterade aspekter vid en potentiell installation av solceller. Det huvudsakliga syftet var att först dimensionera lämpliga PV‑system för att sedan kunna utföra nödvändiga beräkningar gällande ekonomiska återbetalningstider för att kunna fastslå om solcellsanläggningar kan göras lönsamma inom tillverkningsindustrin. Dessutom skulle en omfattande klimatpåverkansanalys utföras för dessa typer av system. Dimensioneringen utfördes genom att först insamla data av kvantitativ karaktär genom mätningar och undersökningar av studieobjektet. Simuleringar utfördes därefter för att fastställa optimala villkor varpå olika system kunde utformas av väletablerade aktörer på solcellsmarknaden. Dessa system fungerade sedan som grund för beräkningarna av återbetalningstider. För klimatpåverkansanalysen jämfördes tre utsläppsscenarion från PV‑system med olika fall av rådande elmix. Dessa data var insamlade genom en omfattande litteraturstudie. Resultatet visar att det går att få solcellsanläggningar ekonomiskt lönsamma inom tillverkningsindustrin, men sannolikt endast med hjälp av ekonomiska bidrag. Även med bidrag så tycks lönsamheten vara betydligt sämre än för exempelvis privata hushåll. Utöver detta kan tillverkningsindustrier i vissa fall tjäna mer på att sälja el till nätet än att spara el, vilket är det diametralt motsatta andra aktörer. Klimatpåverkansanalysen visar att PV‑system genererar en uppenbar klimatnytta utanför Sveriges gränser, men tycks också påvisa att dessa potentiellt kan öka utsläppen i den svenska elmixen. Detta kan innebära att solceller i Sverige ger en negativ klimatpåverkan lokalt, men en positiv globalt, tack vare ökad export av el till följd av en utbyggnad av solcellsanläggningar. Nyckelord: PV‑system, dimensionering, optimering, tillverkningsindustri, ekonomisk återbetalningstid, växthusgasutsläpp, elmix. / The construction of photovoltaic systems has seen an exponential growth in recent years, both internationally and in Sweden. This is mainly due to declining costs and a technology that is getting more efficient while also being seen upon as one of the solutions on the issues regarding climate change. Despite this economic support schemes are often necessary for making PV‑systems profitable, and even though these systems do not generate greenhouse gas emissions during the operating phase, they emit a significant amount during the manufacturing processes of the components. In this case study technical, economical and climate related aspects surrounding a potential PV‑installation in an electric intense industry building in southern Norrland are investigated. The main purpose of this study was to dimension suitable PV‑systems to conduct necessary calculations concerning economical payback times to establish whether PV‑installations can be made profitable within the manufacturing industry. In addition to this a climate impact analysis was going to be made for such systems. The dimensioning process was conducted by firstly gathering quantitative data through measurements and investigations of the object. Thereafter simulations were run to establish optimized conditions for which different PV‑systems could be modelled by companies active in the field. These systems where then used as a foundation to make the necessary calculations regarding payback time. For the climate impact analysis three emission scenarios from PV‑systems where put together and compared to emissions from different cases of electricity production. These data were collected through a comprehensive literature review. The results show that PV‑systems can be profitable within the manufacturing industry, but most likely only with economic support schemes. Even with economic support the profitability is far less than that of private households. Also, industries, in some cases, seem to make more money selling excess electricity rather than saving bought electricity. This is diametrically opposite other parties. The climate impact analysis shows that PV‑systems are highly efficient when it comes to climate change mitigation outside Sweden´s boarders, but also seem to show that they might increase the amount of emissions in Sweden´s electricity mix. This might mean that PV‑installations in Sweden has a negative effect locally, but a positive effect globally, due to a possible increase in exported electricity from Sweden as the number of installations increase.    Keywords: PV system, dimensioning, optimization, manufacturing industry, economic payback time, greenhouse gas emissions, electricity mix.
2

Simulering och dimensionering av ett solcellssystem på en skola i Mellansverige : En fallstudie med fokus på kostnadsoptimal anläggningsstorlek

Starrin, Susanne January 2019 (has links)
Utbyggnationen av solceller ökar exponentiellt både i Sverige och internationellt. En anledning till detta är sjunkande priser, mer effektiv teknik, skattereduktioner och andra ekonomiska incitament samt ett ökande intresse från bland annat elbolag. I många fall behövs fortfarande ekonomiska hjälpmedel som just skattereduktioner eller investeringsstöd för att PV-system (solcellsanläggningar) ska bli förmånliga. I den här fallstudien undersöks möjligheten att installera solceller på Västerberg folkhögskola i Storvik. Fastigheterna ägs av Region Gävleborg. Bionär Närvärme AB som är ett dotterbolag till Gävle Energi AB tillhandahåller värme till fastigheterna via en pelletspanna. På sommaren används el till pannan då värmebehovet är lågt och det finns ett intresse att producera sin egen el med hjälp av solceller. El för uppvärmning tas från skolans elabonnemang och därför dimensioneras PV-systemet mot hela elbehovet. Syftet var att först identifiera lämpliga tak, för att sedan finna den mest kostnadsoptimala storleken på ett PV-system för skolan. Därefter utfördes en simulering för att ta reda på årlig elproduktion och med hjälp av dessa resultat kunde ekonomiska förutsättningar beräknas. Lämpliga takytor valdes ut med avseende på orientering, lutning, storlek och placering av elcentraler. Kvantitativa data gällande fastigheterna och elanvändning samlades in. Därefter testades olika dimensioner på anläggningen i Winsun för att finna den storlek som gav kortast rak återbetalningstid. Sedan utfördes simulering av vald systemstorlek i PVsyst där årligt elutbyte presenterades som resultat. Med hjälp av givna och beräknade värden för elanvändning, solcellsproducerad el, egenanvänd el och överproducerad el (som säljs ut på elnätet) kunde en ekonomisk analys utföras. Resultatet visar att den anläggningsstorlek som ger kortast återbetalningstid är strax under 100 kWp. Efter simulering av valda takytor i PVsyst uppnåddes en toppeffekt på 94,6 kWp. Detta gav en återbetalningstid på 7,8 år. / The advancement of photovoltaic systems is growing exponentially both in Sweden and internationally. Reasons for this include decreasing prices, more efficient techniques, reduction in taxes as well as the increasing interest. In many cases, financial incentives like tax reductions or investment incentives are still necessary for photovoltaic systems to become profitable. In this case study, the possibility of installing a photovoltaic system at Västerberg folkhögskola in Storvik is examined. The properties are owned by Region Gävleborg. Bionär Närvärme AB, which is a subsidiary of Gävle Energi AB, provides the properties with heat through a pellet boiler system. In the summer however, electricity is used for the boiler when the heating requirement is less demanding, and there is an interest in producing electricity using solar cells. Since there is only one electricity subscription the PV-system is dimensioned with regards to the whole of the school’s electricity use including heating. The main purpose was to first identify suitable rooftops and then find the most costeffective size of a photovoltaic system for the school. Then, a simulation was performed to find out the annual electricity production and with the help of these results, an economic calculation could be determined. Suitable rooftops were selected with respect to orientation, angle, size and placement of distribution boxes. Quantitative data regarding the properties and electricity use were collected from Region Gävleborg. Subsequently, different photovoltaic system sizes were tested in Winsun to find the system size that yielded the shortest straight repayment time. Next, simulation of the selected system size was performed in PVsyst, where annual electricity exchange was presented as a result. An economic analysis could be carried out with the help of the values of electricity usage, solar-produced electricity, self-used electricity, over-produced electricity (which is sold to the power grid). The result shows that the system size that gives the shortest repayment time is just under 100 kWp. After simulation of selected rooftops in PVsyst, a peak power of 94.6 kWp was achieved. This gave a payback period of 7,8 years.

Page generated in 0.1287 seconds