Spelling suggestions: "subject:"electo"" "subject:"electonic""
1 |
Electronic and Optical Properties of Silicon Nanowires: Theory and ModelingShiri, Daryoush 10 1900 (has links)
Narrow silicon nanowires host a rich set of physical phenomena. Understanding these phenomena will open new opportunities for applications of silicon nanowires in optoelectronic devices and adds more functionality to silicon especially in those realms that bulk silicon may not operate remarkably. Compatibility of silicon nanowires with the mainstream fabrication technology is also advantageous. The main theme of this thesis is finding the possibility of using silicon nanowires in light sources; laser and light emitting diodes. Using Tight Binding (TB) and ab-initio Density Functional Theory (DFT) methods it was shown that axial strain can induce significant changes in the effective mass, density of states and bandgap of silicon nanowires. Generality of the observed effects was proven by investigating nanowires of different crystallography, diameter and material (e.g. germanium nanowires). The observed direct to indirect bandgap conversion suggests that strain is able to modulate the light emission properties of silicon nanowires.
To investigate this possibility, spontaneous emission time was formulated using perturbation theory including Longitudinal Optical (LO) and Acoustic (LA) phonons. It was observed that corresponding to bandgap conversion, the spontaneous emission time can be modulated by more than one order of magnitude. This emanates from bandgap conversion and symmetry change of wave function in response to strain. A mechanism for population inversion was proposed in the thesis which is based on the Ensemble Monte Carlo (EMC) study of carrier statistics in direct and indirect conduction sub bands. By calculating all possible electron-phonon scattering mechanisms which may deplete the already populated indirect subband, it was shown that at different temperatures and under different electric fields there is a factor of 10 difference between the population of indirect and direct sub bands. This suggests that population inversion can be achieved by biasing an already strained nanowire in its indirect bandgap state. The light emission is possible then by releasing or inverting the strain direction. A few ideas of implementing this experiment were proposed as a patent application. Furthermore the photo absorption of silicon nanowires was calculated using TB method and the role of diameter, optical anisotropy and strain were investigated on band-edge absorption.
|
2 |
Electronic and Optical Properties of Silicon Nanowires: Theory and ModelingShiri, Daryoush 10 1900 (has links)
Narrow silicon nanowires host a rich set of physical phenomena. Understanding these phenomena will open new opportunities for applications of silicon nanowires in optoelectronic devices and adds more functionality to silicon especially in those realms that bulk silicon may not operate remarkably. Compatibility of silicon nanowires with the mainstream fabrication technology is also advantageous. The main theme of this thesis is finding the possibility of using silicon nanowires in light sources; laser and light emitting diodes. Using Tight Binding (TB) and ab-initio Density Functional Theory (DFT) methods it was shown that axial strain can induce significant changes in the effective mass, density of states and bandgap of silicon nanowires. Generality of the observed effects was proven by investigating nanowires of different crystallography, diameter and material (e.g. germanium nanowires). The observed direct to indirect bandgap conversion suggests that strain is able to modulate the light emission properties of silicon nanowires.
To investigate this possibility, spontaneous emission time was formulated using perturbation theory including Longitudinal Optical (LO) and Acoustic (LA) phonons. It was observed that corresponding to bandgap conversion, the spontaneous emission time can be modulated by more than one order of magnitude. This emanates from bandgap conversion and symmetry change of wave function in response to strain. A mechanism for population inversion was proposed in the thesis which is based on the Ensemble Monte Carlo (EMC) study of carrier statistics in direct and indirect conduction sub bands. By calculating all possible electron-phonon scattering mechanisms which may deplete the already populated indirect subband, it was shown that at different temperatures and under different electric fields there is a factor of 10 difference between the population of indirect and direct sub bands. This suggests that population inversion can be achieved by biasing an already strained nanowire in its indirect bandgap state. The light emission is possible then by releasing or inverting the strain direction. A few ideas of implementing this experiment were proposed as a patent application. Furthermore the photo absorption of silicon nanowires was calculated using TB method and the role of diameter, optical anisotropy and strain were investigated on band-edge absorption.
|
3 |
Desenvolvimento de um sensor para quantificação de forças em experimentos in situ de microscopia eletrônica / Development of a sensor for quantification of forces in situ electron microscopy experimentsOiko, Vitor Toshiyuki Abrão, 1986- 06 February 2014 (has links)
Orientadores: Daniel Mario Ugarte, Varlei Rodrigues / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-24T10:25:30Z (GMT). No. of bitstreams: 1
Oiko_VitorToshiyukiAbrao_D.pdf: 44112591 bytes, checksum: 93cb68b7fac3caf690848f58147ff259 (MD5)
Previous issue date: 2014 / Resumo: O estudo de nano-sistemas tem atraído grande atenção nos últimos anos, principalmente devido às suas possíveis e novas aplicações tecnológicas. Muitos esforços tem sido feitos nessa área, porém há ainda várias questões em aberto com relação a compreensão de nanoestruturas. Um dos principais desafios diz respeito à manipulação e o posicionamento controlado de nanoobjetos, juntamente com a quantificação das forças envolvidas e a caracterização das propriedades mecânicas em nanoescala. Muitos avanços foram atingidos combinando-se a microscopia eletrônica de varredura (SEM) e a de força atômica (AFM), realizando experimentos in situ que aproveitam a resolução e a formação de imagens do SEM, e a capacidade de medir forças em sistemas nanométricos do AFM. Nesta tese discutimos a quantificação de forças de intensidade < N, aplicadas em experimentos de nanomanipulação in situ de SEM, através do desenvolvimento de um sensor baseado no uso de diapasões de quartzo (tuning fork). Abordamos os aspectos técnicos relevantes à construção do sensor e seu funcionamento, desde o problema de se medir forças da ordem de nN em nano-objetos individuais, até sua aplicação em sistemas dessa dimensão. Pontos fundamentais do desenvolvimento como a definição da sua configuração, da eletrônica de aquisição e da metodologia de calibração e de aplicação são tratados em detalhe. Um processo de calibração baseado na deformação in situ de cantilevers de AFM é utilizado para permitir a quantificação da força. Subsequentemente a medida dos valores é feita exclusivamente através das curvas de ressonância do tuning fork, independendo completamente das imagens de microscopia. Forças no intervalo de 1-100 nN foram medidas, e a aplicação do sensor foi dada no intervalo de 4-40 nN. A precisão obtida na quantificação foi de alguns nN, ?F ?1-4 nN. O sistema foi testado em experimentos de deformação de bundles de nanotubos de carbono in situ em um SEM, nos quais medimos quantitativamente a influência das forças de van der Waals no atrito dinâmico durante o escorregamento entre nanotubos. As forças obtidas nesses experimentos variaram entre 14-35 nN / Abstract: The study of nanosystems has attracted many attention in recent years, mainly due to their novel possible technological applications. Many efforts have been made in this area, however several open questions regarding the comprehension of such structures remain. A major challenge concerns the manipulation and the controlled positioning of nano-objects, together with the quantification of the involved forces and the mechanical characterization at the nanoscale. Many advances have been achieved by combining the scanning electron microscopy (SEM) and the atomic force microscope (AFM), conducting thus in situ experiments that profit from SEM¿s resolution and imaging and from AFM¿s ability to measure forces in nanoscale systems. In this thesis we treat the quantification of forces with intensity < N applied during in situ nanomanipulation experiments performed inside a SEM by developing a force sensor based on quartz tuning forks. Our approach comprises the technical aspects relevant to the sensor¿s assembly and its operation, from the issue of measuring forces of the order of nN on individual nano-objects, to its application on nanosystems. Key points of development such as the sensor¿s design, electronics, calibration and applications are described in details. A calibration process based on the in situ bending AFM cantilevers is carried out to enable the force quantification. Subsequently the force measurement is done exclusively by the TF¿s resonance curve, being completely independent of the microscopy images. Forces in the range of 1-100 nN were measured, and the sensor¿s application was considered between 4 nN and 40 nN. The precison acquired was of a few nN, ?F ?1-4 nN. To test the sensor in situ strain experiments were performed on bundles of carbon nanotubes from which we measured quantitatively the van der Waals¿ influence on the dynamic friction during the sliding of adjacent bundles. The forces acquired were then in the range of 14-35 nN / Doutorado / Física / Doutor em Ciências
|
4 |
Single and Accumulative Electron Transfer – Prerequisites for Artificial PhotosynthesisKarlsson, Susanne January 2010 (has links)
Photoinduced electron transfer is involved in a number of photochemical and photobiological processes. One example of this is photosynthesis, where the absorption of sunlight leads to the formation of charge-separated states by electron transfer. The redox equivalents built up by successive photoabsorption and electron transfer is further used for the oxidation of water and reduction of carbon dioxide to sugars. The work presented in this thesis is part of an interdisciplinary effort aiming at a functional mimic of photosynthesis. The goal of this project is to utilize sunlight to produce renewable fuels from sun and water. Specifically, this thesis concerns photoinduced electron transfer in donor(D)-photosensitizer(P)-acceptor(A) systems, in mimic of the primary events of photosynthesis. The absorption of a photon typically leads to transfer of a single electron, i.e., charge separation to produce a single electron-hole pair. This fundamental process was studied in several molecular systems. The purpose of these studies was optimization of single electron transfer as to obtain charge separation in high yields, with minimum losses to competing photoreactions such as energy transfer.Also, the lifetime of the charge separated state and the confinement of the electron and hole in three-dimensional space are important in practical applications. This led us to explore molecular motifs for linear arrays based on Ru(II)bis-tridentate and Ru(II)tris-bidentate complexes. The target multi-electron catalytic reactions of water-splitting and fuel production require a build-up of redox equivalents upon successive photoexcitation and electron transfer events. The possibilities and challenges associated with such processes in molecular systems were investigated. One of the studied systems was shown to accumulate two electrons and two holes upon two successive excitations, without sacrificial redox agents and with minimum yield losses. From these studies, we have gained better understanding of the obstacles associated with step-wise photoaccumulation of charge and how to overcome them.
|
Page generated in 0.0277 seconds