• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 11
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 134
  • 67
  • 58
  • 42
  • 40
  • 37
  • 36
  • 33
  • 30
  • 25
  • 21
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nanomechanical and Electro-mechanical Characterization of Materials for Flexible Electrodes Applications

Peng, Cheng 16 September 2013 (has links)
Flexible electronics attract research and commercial interests in last 2 decades for its flexibility, low cost, light weight and etc. To develop and improve the electro-mechanical properties of flexible electrodes is the most critical and important step. In this work, we have performed nanomechanical and electro-mechanical characterization of materials for flexible electrode applications, including metallic nanowires (NWs), indium tin oxide (ITO)-based and carbon nanotube (CNT)-based electrodes. First, we designed and developed four different testing platforms for nanomechanical and electro-mechanical characterization purpose. For the nano/sub-micro size samples, the micro mechanical devices can be used for uni-axial and bi-axial loading tests. For the macro size samples, the micro tester will be used for in situ monotonic tensile test, while the fatigue tester can be used for in situ cyclic tensile or bending testing purpose. Secondly, we have investigated mechanical behaviors of single crystalline Ni nanowires and single crystalline Cu nanowires under uni-axial tensile loading inside a scanning electron microscope (SEM) chamber. We demonstrated both size and strain-rate dependence on yield stress of single-crystalline Ni NWs with varying diameters (from 100 nm to 300 nm), and themolecular dynamics (MD) simulation helped to confirm and understand the experimental phenomena. Also, two different fracture modes, namely ductile and brittle-like fractures, were found in the same batch of Cu nanowire samples. Finally, we studied the electro-mechanical behaviors of flexible electrodes in macro scale. We reported a coherent study integrating in situ electro-mechanical experiments and mechanics modeling to decipher the failure mechanics of ITO-based and CNT-based electrodes under tension. It is believed that our combined experimental and simulation results provide some further insights into the important yet complicated deformation mechanisms for nanoscale metals and fracture mechanism for flexible electrodes applications.
42

Mechanical and Regenerative Braking Integration for a Hybrid Electric Vehicle

DeMers, Steven Michael January 2008 (has links)
Hybrid electric vehicle technology has become a preferred method for the automotive industry to reduce environmental impact and fuel consumption of their vehicles. Hybrid electric vehicles accomplish these reductions through the use of multiple propulsion systems, namely an electric motor and internal combustion engine, which allow the elimination of idling, operation of the internal combustion engine in a more efficient manner and the use of regenerative braking. However, the added cost of the hybrid electric system has hindered the sales of these vehicles. A more cost effective design of an electro-hydraulic braking system is presented. The system electro-mechanically controlled the boost force created by the brake booster independently of the driver braking force and with adequate time response. The system allowed for the blending of the mechanical and regenerative braking torques in a manner transparent to the driver and allowed for regenerative braking to be conducted efficiently. A systematic design process was followed, with emphasis placed on demonstrating conceptual design feasibility and preliminary design functionality using virtual and physical prototyping. The virtual and physical prototypes were then used in combination as a powerful tool to validate and develop the system. The role of prototyping in the design process is presented and discussed. Through the experiences gained by the author during the design process, it is recommended that students create physical prototypes to enhance their educational experience. These experiences are evident throughout the thesis presented.
43

Fracture of Ferroelectric Materials

Oates, William Sumner 18 August 2004 (has links)
Ferroelectric materials continue to find increasing use in actuator, sensor and transducer design. Questions regarding lifetime and reliability remain a concern due to the inherent low fracture toughness and complex material behavior. The poling procedure required for use in actuator and sensing devices introduces anisotropy in elastic and dielectric coefficients as well as piezoelectric coupling between the mechanical and electrical fields. This introduces complex fracture behavior which necessitates advanced analytical techniques and fracture characterization. In this dissertation, fracture mechanics of ferroelectric materials is evaluated by employing different analytical techniques and experimental methodology. The theoretical work has focused on linear piezoelectric coupling that accounts for the influence of anisotropy and heterogeneity on fracture. A new orthotropic rescaling technique is presented that explicitly solves the anisotropic linear elastic piezoelectric crack problem in terms of material coefficients. The effects of heterogeneities on electric field induced microfracture are analyzed by implementing a crack at the edge of a heterogeneous piezoelectric inclusion. A positive, flaw-localized driving force is realized when permeable crack face boundary conditions are considered. The experimental portion of the work evaluates fracture behavior in the ferroelectric ceramic, lead zirconate titanate (PZT), and the ferroelectric relaxor single crystal PZN-4.5%PT. Relative humidity and electric boundary conditions are shown to have significant effects on crack kinetics in PZT. Fracture anisotropy in single crystal PZN-4.5%PT is characterized using the Single-Edge V-notch Beam (SEVNB) method and Vickers indentations. Scanning electron micrographs are used to determine the crack profile which leads to a prediction of crack tip toughness and local energy release rate. A weak cleavage plane is identified in the single crystal relaxor which contains a significantly lower toughness in comparison to the ferroelectric ceramic PZT.
44

Development of an Innovative Micro Capacitive Humidity Sensor with Double Polyimide Thin Films and Interlacing Out-of-plane Electrodes

Li, Yao-Yu 21 July 2006 (has links)
Polyimide thin films have been widely used in microelectronic and Micro-Electro-Mechanical System applications due to their many excellent characteristics including low dielectric constant, easy processing, good step coverage ability, high heat resistance and chemical resistance. This paper presents the design, fabrication and complete characterization of an innovative capacitive relative humidity (RH) microsensor. The double polyimide thin films adopted in this study function as a capacitance sensing layer and a protecting layer of top electrodes respectively. To improve the humidity sensitivity and responding speed, interlacing out-of-plane electrodes are designed in the RH microsensor. The higher sensitivity ( 1.25 pF/¢HRH ), optimized sensing linearity ( 99.968¢H ) , very low hysteresis ( 0.24 ¢HRH ), excellent stability ( 1.36 ¢HRH ) , high accuracy ( ¡Ó 1.12 ¢HRH ) and fast response ( within 1 seconds ) characteristics of the RH microsensor have been demonstrated in this thesis.
45

High precision motion control based on a discrete-time sliding mode approach

Li, Yufeng January 2001 (has links)
No description available.
46

Neuromuscular electrical stimulation after anterior cruciate ligament reconstruction surgery : Effects on rate of torque development and electromechanical delay / Neuromuskulär elektrisk stimulering efter främre korsbandsrekonstruktion : Effekt på kraftmomentsutveckling och elektromekanisk fördröjning

Musi Wennergren, Alexander January 2015 (has links)
Abstract Aim: The main objective of this study was to compare electro mechanical delay (EMD) and rate of torque development (RTD) of the knee extensors 6 weeks after rehabilitation of anterior cruciate ligament reconstruction (ACLR) with or without neuromuscular electrical stimulation (NMES). Further the feasibility of the study was examined. Method: 10 participants were randomized into two groups, one neuromuscular electrical stimulation group (NMESG) and one training group (TG). The NMESG used a NMES-device as a complement to the ordinary rehabilitation protocol. Regular meetings with a physiotherapist were scheduled during the rehabilitation. Measurements of RTD and EMD during knee extension were made in an isokinetic dynamometer with electromyography recordings (EMG) from the knee extensors 6 weeks after surgery. Results: All participants completed the study. The NMESG went to see the physiotherapist 6.7 ± 2.5 times and the TG 6.8 ± 1.8 times. The participants in the NMESG used the NMES-apparatus 28 ± 1.7 times. Total number of training days for the NMESG was 25 ± 4 and for the TG 35 ± 1. RTD did not significantly differ between the groups. For the TG, RDT was 901.1, 941.2 and 531.0 Nm/s, over the first 50, 100 and 200 ms, respectively. For NMESG: RTD was 824.3, 966.2 and 529.0 Nm/s, over the first 50, 100 and 200 ms, respectively. No significant difference between the groups or interaction between group and muscle was found in EMD. For both groups EMD was significantly larger for vastus medialis as compared to the vastus lateralis and rectus femoris. Conclusions: The study was feasible to perform, and despite fewer training days for the NMESG, no significant group differences were found in RTD or EMD. A larger study population is needed to evaluate the efficacy of the intervention. / Abstrakt Syfte: Huvudsyftet med denna studie var att jämföra elektromekaniska fördröjning (EMD) och vridmoment utveckling (RTD) för knäextensorerna 6 veckor efter rehabilitering av främre korsbandsrekonstruktion (ACLR) med eller utan neuromuskulär elektrisk stimulering (NMES). Vidare undersöktes genomförbarheten av studien. Metod: 10 deltagare randomiseras in i två grupper, en neuromuskulär elektrisk stimulerings grupp (NMESG) och en träningsgrupp (TG). NMESG använde en NMES - enhet som ett komplement till ordinarie rehabiliteringsprotokoll. Regelbundna möten med sjukgymnast var inplanerad under rehabiliteringen. Mätningar av RTD och EMD under knäets extension gjordes i en isokinetisk dynamometer med elektromyografi inspelningar (EMG) från knäextensorerna 6 veckor efter operationen. Resultat: Alla deltagare fullföljde studien. NMESG träffade sjukgymnasten 6,7 ± 2,5 gånger och TG 6,8 ± 1,8 gånger. Deltagarna i NMESG använde NMES - apparaten 28 ± 1,7 gånger. Totalt antal träningsdagar för NMESG var 25 ± 4 och för TG 35 ± 1. RTD skiljde sig inte signifikant mellan grupperna. För TG var RDT 901,1, 941,2 och 531,0 Nm/s, under de respektive första 50, 100 och 200 ms. För NMESG var RTD 824,3, 966,2 och 529,0 Nm/s, under de respektive första 50, 100 och 200 ms. Inga signifikanta skillnader mellan grupperna eller samspel mellan grupp och muskler hittades i EMD. För båda grupperna var EMD signifikant större för vastus medialis jämfört vastus lateralis och rectus femoris. Slutsats: Studien var möjligt att utföra, och trots färre träningsdagar för NMESG sågs inga signifikanta skillnader mellan grupperna i RTD eller EMD. Det behövs en större studiepopulation för att utvärdera effekten av interventionen.
47

Silicon-Integrated Two-Dimensional Phononic Band Gap Quasi-Crystal Architecture

Norris, Ryan Christopher January 2011 (has links)
The development and fabrication of silicon-based phononic band gap crystals has been gaining interest since phononic band gap crystals have implications in fundamental science and display the potential for application in engineering by providing a relatively new platform for the realization of sensors and signal processing elements. The seminal study of phononic band gap phenomenon for classical elastic wave localization in structures with periodicity in two- or three-physical dimensions occurred in the early 1990’s. Micro-integration of silicon devices that leverage this phenomenon followed from the mid-2000’s until the present. The reported micro-integration relies on exotic piezoelectric transduction, phononic band gap crystals that are etched into semi-infinite or finite-thickness slabs which support surface or slab waves, phononic band gap crystals of numerous lattice constants in dimension and phononic band gap crystal truncation by homogeneous mediums or piezoelectric transducers. The thesis reports, to the best of the author's knowledge, for the first time, the theory, design methodology and experiment of an electrostatically actuated silicon-plate phononic band gap quasi-crystal architecture, which may serve as a platform for the development of a new generation of silicon-integrated sensors, signal processing elements and improved mechanical systems. Electrostatic actuation mitigates the utilization of piezoelectric transducers and provides action at a distance type forces so that the phononic band gap quasi-crystal edges may be free standing for potentially reduced anchor and substrate mode loss and improved energy confinement compared with traditional surface and slab wave phononic band gap crystals. The proposed phononic band gap quasi-crystal architecture is physically scaled for fabrication as MEMS in a silicon-on-insulator process. Reasonable experimental verification of the model of the electrostatically actuated phononic band gap quasi-crystal architecture is obtained through extensive dynamic harmonic analysis and mode shape topography measurements utilizing optical non-destructive laser-Doppler velocimetry. We have utilized our devices to obtain fundamental information regarding novel transduction mechanisms and behavioral characteristics of the phononic band gap quasi-crystal architecture. Applicability of the phononic band gap quasi-crystal architecture to physical temperature sensors is demonstrated experimentally. Vibration stabilized resonators are demonstrated numerically.
48

Development Of Test Structures And Methods For Characterization Of Mems Materials

Yildirim, Ender 01 September 2005 (has links) (PDF)
This study concerns with the testing methods for mechanical characterization at micron scale. The need for the study arises from the fact that the mechanical properties of materials at micron scale differ compared to their bulk counterparts, depending on the microfabrication method involved. Various test structures are designed according to the criteria specified in this thesis, and tested for this purpose in micron scale. Static and fatigue properties of the materials are aimed to be extracted through the tests. Static test structures are analyzed using finite elements method in order to verify the results. Test structures were fabricated by deep reactive ion etching of 100 &micro / m thick (111) silicon and electroplating 18 &micro / m nickel layer. Performance of the test structures are evaluated based on the results of tests conducted on the devices made of (111) v silicon. According to the results of the tests conducted on (111) silicon structures, elastic modulus is found to be 141 GPa on average. The elastic modulus of electroplated nickel is found to be 155 GPa on average, using the same test structures. It is observed that while the averages of the test results are acceptable, the deviations are very high. This case is related to fabrication faults in general. In addition to the tests, a novel computer script utilizing image processing is also developed and used for determination of the deflections in the test structures.
49

Synchrophasor-based robust power system stabilizer design using eigenstructure assignment

KONARA MUDIYANSELAGE, ANUPAMA 11 December 2015 (has links)
Power system stabilizers (PSSs) provide the most economical way to improve damping of electro-mechanical oscillations in electrical power systems. Synchrophasor technology enables the use of remotely measured signals in the PSS allowing for greater flexibility in the design of the PSS. Issues related to the transmission of remote signals should be addressed before implementing such systems in practice. This study investigates two of the data transmission issues: (i) delays, and (ii) data dropout; using a synchrophasor-based PSS designed for a two-area four-generator power system model. A time delayed system is modeled using discrete transformation and the effect of the constant delay on the control action of improving damping of an electro-mechanical oscillation is determined analytically. The effect of random delays and data dropout is investigated using non-linear simulations considering viable remedies to overcome these effects. This research also identifies effective means of using synchrophasor signals for improving the performance of PSSs. Primarily, this research introduces a novel control design algorithm based on eigenstructure assignment that could utilize remotely measured signals to design a robust PSS considering different operating conditions at the design stage. Remote signals could be used as additional inputs to the controller, which introduces extra degrees of freedom. In eigenstructure assignment, these additional degrees of freedom are used to assign eigenvalues and eigenvectors to have adequate damping performance of the system over different operating conditions. The algorithm is formulated as a derivative-free non-linear optimization problem and solved using a single step of optimization by eliminating the use of eigenvalue sensitivities. The proposed algorithm is tested for the 68 bus model of the interconnected New England test system and New York power system. Three different control configurations that use local and remote signals are considered in the design. The algorithm is solved using non-linear simplex optimization considering different initial points for seeking a global solution. Delays in the remote signals are also incorporated into the design. The designed controllers are verified in a non-linear simulation platform. Finally, the reliability of synchrophasor-based PSS is discussed in brief. / February 2016
50

Robot Control for Remote Ophthalmology and Pediatric Physical Rehabilitation

Morris, Melissa 21 April 2017 (has links)
The development of a robotic slit-lamp for remote ophthalmology is the primary purpose of this work. In addition to novel mechanical designs and implementation, it was also a goal to develop a control system that was flexible enough to be adapted with minimal user adjustment to various styles and configurations of slit-lamps. The system was developed with intentions of commercialization, so common hardware was used for all components to minimize the costs. In order to improve performance using this low-cost hardware, investigations were made to attempt to achieve better performance by applying control theory algorithms in the system software. Ultimately, the controller was to be flexible enough to be applied to other areas of human-robot interaction including pediatric rehabilitation via the use of humanoid robotic aids. This application especially requires a robust controller to facilitate safe interaction. Though all of the prototypes were successfully developed and made to work sufficiently with the control hardware, the application of advanced control did not yield notable gains as was hoped. Further investigations were made attempting to alter the performance of the control system, but the components selected did not have the physical capabilities for improved response above the original software implemented. Despite this disappointment, numerous novel advances were made in the area of teleoperated ophthalmic technology and pediatric physical rehabilitation tools. This includes a system that is used to remote control a slit-lamp and lens for examinations and some laser procedures. Secondly, a series of of humanoid systems suitable for both medical research and therapeutic modeling were developed. This included a robotic face used as an interactive system for ophthalmic testing and training. It can also be used as one component in an interactive humanoid robotic system that includes hands and arms to allow use of teaching sign language, social skills or modeling occupational therapy tasks. Finally, a humanoid system is presented that can serve as a customized surrogate between a therapist and client to model physical therapy tasks in a realistic manner. These systems are all functional, safe and low-cost to allow for feasible implementation with patients in the near future.

Page generated in 0.0826 seconds