• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 11
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 134
  • 67
  • 58
  • 42
  • 40
  • 37
  • 36
  • 33
  • 30
  • 25
  • 21
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analyzing damping in large models of complex dynamic systems

Liem, Alyssa Tomoko 15 May 2021 (has links)
From the nano scale to the macro scale, large models are used to simulate and predict the responses of dynamic systems. The construction and evaluation of such models, often in the form of finite element models, require tremendous computational resources and time. Due to this large computational endeavor, it is paramount to learn as much as possible from the models and their solutions. In this work, analyses and methods for efficiently deriving significant knowledge of damped systems from models and their solutions are presented. Of primary interest to this work is the analysis of damped structures. Damping, the means by which energy is dissipated, often adds an additional layer of complexity to finite element models and any subsequent analyses. This added complexity is due to the relative complexity of many damping models and their accompanying computational burden. Furthermore, on the micro and nano scale, a variety of damping mechanisms, each with their own unique set of physics, may be present. The research presented in this work is organized in two parts. The first part presents methods for deriving knowledge from models and their solutions. Here, the developed methods perform approximate yet highly efficient analysis on the matrices and solution vectors of finite element models. In this work, methods utilizing the Neumann series approximation are presented. These methods efficiently predict how the response of a structure depends on its damping or any other input model parameter. Additionally, a method for analyzing the spatial dependence of damping with the use of loss factor images is presented. Research presented in the second part derives knowledge solely from solutions of models. In this part, it is assumed that the matrices of the models are not available, and therefore analysis is restricted to the solution itself. Here, research is focused on the analyses of structures on the micro and nano scale. Specifically, micro and nano beams surrounded by a viscous compressible fluid are analyzed. The dynamic responses of the structure and the surrounding fluid are analyzed to determine the prominent damping mechanisms. Here, results from 2--Dimensional analytical models and 3--Dimensional finite element models are complemented by experimental measurements to analyze damping due to viscous dissipation and acoustic radiation.
62

Design and Implementation of Door Opening and Battery Charge Device

King, Samuel 01 June 2023 (has links)
No description available.
63

Energy Aware Signal Processing and Transmission for System Condition Monitoring

Kadrolkar, Abhijit 01 January 2010 (has links) (PDF)
The operational life of wireless sensor network based distributed sensing systems is limited by the energy provided by a portable battery pack. Owing to the inherently resource constrained nature of wireless sensor networks and nodes, a major research thrust in this field is the search for energy-aware methods of operation. Communication is among the most energy-intensive operations on a wireless device. It is therefore, the focus of our efforts to develop an energy-aware method of communication and to introduce a degree of reconfigurability to ensure autonomous operation of such devices. Given this background, three research tasks have been identified and investigated during the course of this research. 1) Devising an energy-efficient method of communication in a framework of reconfigurable operation: The dependence of the energy consumed during communication on the number of bits transmitted (and received) was identified from prior research work. A novel method of data compression was designed to exploit this dependence. This method uses the time-limited, orthonormal Walsh functions as basis functions for representing signals. The L2 norm of this representation is utilized to further compress the signals. From Parseval’s relation, the square of the L2 norm represents the energy content of a signal. The application of this theorem to our research makes it possible to use the L2 norm as a control knob. The operation of this control knob makes it possible to optimize the number of terms required to represent signals. The time-limited nature of the Walsh functions was leveraged to inject dynamic behaviour into our coding method. This time-limited nature allows decomposition of finite time-segments, without attendant limitations like loss of resolution that are inherent to derived, discrete transforms like the discrete Fourier transform or the discrete time Fourier transform. This decomposition over successive, finite time-segments, coupled with innovative operation of the previously mentioned control knob on every segment, gives us a dynamic scaling technique. The amount of data to be transmitted is in turn based on the magnitude of the coefficients of decomposition of each time-segment, leading to the realization of a variable word length coding method. This dynamic coding method can identify evolving changes or events in the quantity being sensed. The coefficients of decomposition represent features present in successive time-segments of signals and therefore enable identification of evolving events. The ability to identify events as they occur enables the algorithm to react to events as they evolve in the system. In other words the data transmission and the associated energy consumption are imparted a reconfigurable, event-driven nature by implementation of the coding algorithm. Performance evaluation of this method via simulations on machine generated (bearing vibration) and biometric (electro-cardio gram) signals shows it be a viable method for energy-aware communication. 2) Developing a framework for reconfigurable triggering: A framework for completely autonomous triggering of the coding method has been developed. This is achieved by estimating correlations of the signal with the representative Walsh functions. The correlation coefficient of a signal segment with a Walsh function gives a picture of the amount of energy localized by the function. This information is used to autonomously tune the abovementioned control knob or, in more proper terms, the degree of thresholding used in compression. Evaluation of this framework on bearing vibration and electro-cardio gram signals has shown results consistent with those of previous simulations. 3) Devising a computationally compact method of feature classification: A method of investigating time series measurements of dynamic systems in order to classify features buried in the signal measurements was investigated. The approach involves discretizing time-series measurements into strings of pre-defined symbols. These strings are transforms of the original time-series measurements and are a representation of the system dynamics. A method of statistically analyzing the symbol strings is presented and its efficacy is studied through representative simulations and experimental investigation of vibration signals recorded from a rolling bearing element. The method is computationally compact because it obviates the need for local signal processing tasks like denoising, detrending and amplification. Results indicate that the method can effectively classify deteriorating machine health, changing operating conditions and evolving defects. In addition to these major foci, another research task was the design and implementation of a wireless network testbed. This testbed consists of a network of netbooks, connected together wirelessly and was utilized for experimental verification of the variable word length coding method.
64

Design and Testing of a Novel Adhesion and Locomotion Method for Wall Climbing Vehicles

Stefani, Jim R 01 June 2016 (has links) (PDF)
The objective of this project was to design, construct and test a wall climbing vehicle which uses a novel vacuum tread system for both adhesion and locomotion. The design and manufacturing of this proof of concept vehicle is detailed with particular emphasis on the design decisions that proved most impactful to the performance of both the vehicle and the tread system. Adhesion performance was characterized by a series of tests that validate the concept, but also identify improvements and design recommendations for future embodiments of the adhesion/locomotion system.
65

A Numerical Simulation Optimizing Droplet Motion Driven by Electrowetting

Lesinski, Jake M. 01 June 2019 (has links) (PDF)
A numerical simulation of electrowetting on a dielectric was performed in COMSOL to grant insight on various parameters that play a critical role in system performance. The specific system being simulated was the Open Drop experiment and the parameters being investigated were the applied voltage, contact angle at the advancing triple point, and droplet overlap onto neighboring actuated electrodes. These parameters were investigated with respect to their effect on droplet locomotion performance. This performance was quantified by the droplets velocity and the dielectrophortic (DEP) force’s magnitude; the DEP force was calculated from integration of the Maxwell Stress Tensor, however, the force was not integrated into the simulation to assist with droplet movement. It was found that as the droplet overlap onto the neighboring electrode, or droplet radius to electrode size ratio, decreased, the droplet velocity increased. As the applied potential increased, and induced contact angle at the advancing triple point decreased, droplet velocity also increased. Both the decreasing overlap and increasing voltage had a linear effect on droplet velocity. As the droplet overlap increased, the rate of change of droplet velocity decreased as increasing voltages were considered. A 2D DEP calculation illustrated that an increase in voltage induced a tenfold increase in the corresponding DEP force; a linear relationship was found between droplet overlap and DEP force for the Open Drop size regime.
66

Polymer-derived Ceramics: Electronic Properties And Application

Xu, Weixing 01 January 2006 (has links)
In this work, we studied the electronic behavior of polymer-derived ceramics (PDCs) and applied them for the synthesis of carbon nanotube reinforced ceramic nanocomposites and ceramic MEMS (Micro-Electro-Mechanical Systems) structures. Polymer-derived SiCN ceramics were synthesized by pyrolysis of a liquid polyureasilazane with dicumyl peroxide as thermal initiator. The structural evolution during pyrolysis and post-annealing was studied using FTIR, solid state NMR and Raman. The results revealed that the resultant ceramics consisted of SiCxNx-4 as major building units. These units were connected with each other through C-C/C=C bonds or by shearing N/C. The amount of sp2 free carbon strongly depends on composition and processing condition. Electron paramagnetic resonance (EPR) was used to investigate electronic structure of PDCs; the results revealed that the materials contain unpaired electron centers associated with carbons. Electronic behavior of the SiCN ceramics was studied by measuring their I-V curves, temperature dependence of d.c.-conductivities and impendence. The results revealed that the SiCN ceramics exhibited typical amorphous semiconductor behavior, and their conductivity varied in a large range. The results also revealed that the materials contain more than one phase, which have the different electronic behavior. We explored possibility of using polymer-derived ceramics to make ceramic MEMS for harsh environmental applications with a lithography technique. The cure depth of the polymer precursor was measured as a function of UV intensity and exposure time. The experimental data was compared with the available theoretical model. A few typical SiCN parts were fabricated by lithography technique. We also prepared carbon nanotube reinforced ceramic nanocomposites by using PDC processing. The microstructures of the composites were characterized using SEM and TEM; the mechanical properties were studied characterized using nanoindentation. The significant improvement in mechanical properties was observed for the nanocomposites.
67

Sparse Aperture Speckle Interferometry Telescope Active Optics Control System

Clause, Matthew 01 December 2015 (has links) (PDF)
A conventional large aperture telescope required for binary star research is typically cost prohibitive. A prototype active optics system was created and fitted to a telescope frame using relatively low cost components. The active optics system was capable of tipping, tilting, and elevating the mirrors to align reflected star light. The low cost mirror position actuators have a resolution of 31 nm, repeatable to within 16 nm. This is accurate enough to perform speckle analysis for the visible light spectrum. The mirrors used in testing were not supported with a whiffletree and produced trefoil-like aberrations which made phasing two mirrors difficult. The active optics system was able to successfully focus and align the mirrors through manual adjustment. Interference patterns could not be found due to having no method of measuring the mirror surfaces, preventing proper mirror alignment and phasing. Interference from air turbulence and trefoil-like aberrations further complicated this task. With some future project additions, this system has the potential to be completely automated. The success of the active optics actuators makes for a significant step towards a fully automated sparse aperture telescope.
68

Modeling and Control of a Vertical Hopping Robot

Kwan, Bradley Y. 01 June 2021 (has links) (PDF)
Single degree-of-freedom hopping robots are typically modeled as spring loaded inverted pendulums (SLIPs). This simplified model, however, does not consider the overall leg geometry, consequently making it difficult to investigate the optimized inertial distribution of the leg for agile locomotion. To address this issue, the first part of this thesis establishes an accurate mathematical model of a DC-motor-driven, two-link hopping robot where the motors are modeled as torque sources. The equations of motion for the two distinct phases of locomotion (stance and flight) are derived using the Lagrangian approach for holonomic systems. A Simulink/Stateflow model is developed to numerically simulate the robot’s locomotion. The model is then validated with the simulation data from Simscape Multibody, which allows for accurate modeling of the environment and inertial properties for complex geometries. With the accurate model of the hopping robot, two distinct control strategies are adopted. The first strategy focuses on implementing position control while the robot is in flight to prepare for touchdown. The second control method explores implementing impedance control during stance, allowing the response to mimic that of a mass-spring-damper model. It was found that concentrating the mass of the robot in the hip allows the robot to attain larger apex heights as opposed to evenly distributing the mass throughout the leg. With plans to implement the leg on a quadruped robot, the mathematical model is easily expandable to 2 or 3 degrees-of-freedom. This allows for further stability analysis and development of control strategies of the leg.
69

Robotic Fingerspelling Hand for the Deaf-Blind

Vin, Jerry 01 November 2013 (has links) (PDF)
Because communication has always been difficult for people who are deaf-blind, The Smith-Kettlewell Eye Research Institute (SKERI), in conjunction with the California Polytechnic State University Mechanical Engineering department, has commissioned the design, construction, testing, and programming of a robotic hand capable of performing basic fingerspelling to help bridge the communication gap. The hand parts were modeled using SolidWorks and fabricated using an Objet rapid prototyper. Its fingers are actuated by 11 Maxon motors, and its wrist is actuated by 2 Hitec servo motors. The motors are controlled by Texas Instruments L293D motor driver chips, ATtiny2313 slave microcontroller chips programmed to act as motor controllers, and a master ATmega644p microcontroller. The master controller communicates with a computer over a USB cable to receive sentences typed by a sighted user. The master controller then translates each letter into its corresponding hand gesture in the American Manual Alphabet and instructs each motor controller to move each finger joint into the proper position.
70

Telescope Parallel Actuator Mount: Control and Testing

Artho-Bentz, Samuel S 01 November 2020 (has links) (PDF)
This thesis approaches the task of designing a control system for the Parallel Actuator Mount developed by Dr. John Ridgely and Mr. Garrett Gudgel. It aims to create a base framework that directly controls the telescope and can be expanded to accept external command. It incorporates lower priced components and develops more easily approachable software with great functionality. An open-loop method for velocity control is established. Developing repeatable tests is a major focus. Testing finds the control methods developed result in velocity error of less than 5% and position error of less than 1.5% despite several mechanical issues and inaccuracies. Design guidelines are established that allow for the easy implementation of a Parallel Actuator Mount on other systems. This paper proves that the Parallel Actuator Mount is a potentially viable system for aiming a telescope when an astronomer does not require full sky coverage. The tests showed too much error to fully recommend the system as built and tested, but there are paths to increase accuracy of the system without greatly increasing the complexity or cost. The inclusion of a method of feedback, including a plate solver and an inertial measurement unit, would greatly improve the system. It may also be of use to modify the software to include a variable time step for the velocity control.

Page generated in 0.078 seconds