• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 132
  • 58
  • 39
  • 35
  • 31
  • 30
  • 28
  • 25
  • 20
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Diagnostic and Therapeutic MEMS (Micro-Electro-Mechanical Systems) Devices for the Identification and Treatment of Human Disease

January 2018 (has links)
abstract: Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale more sensitive to numerous biological processes. The application of Micro-Electro-Mechanical Systems (MEMS) in biomedical settings has recently emerged and flourished over course of the last two decades, requiring a deep understanding of material biocompatibility, biosensing sensitively/selectively, biological constraints for artificial tissue/organ replacement, and the regulations in place to ensure device safety. Capitalizing on the inherent physical differences between cancerous and healthy cells, our ultra-thin silicone membrane enables earlier identification of bladder cancer—with a 70% recurrence rate. Building on this breakthrough, we have devised an array to multiplex this sample-analysis in real-time as well as expanding beyond bladder cancer. The introduction of new materials—with novel properties—to augment current and create innovative medical implants requires the careful analysis of material impact on cellular toxicity, mutagenicity, reactivity, and stability. Finally, the achievement of replacing defective biological systems with implanted artificial equivalents that must function within the same biological constraints, have consistent reliability, and ultimately show the promise of improving human health as demonstrated by our hydrogel check valve. The ongoing proliferation, expanding prevalence, and persistent improvement in MEMS devices through greater sensitivity, specificity, and integration with biological processes will undoubtedly bolster medical science with novel MEMS-based diagnostics and therapeutics. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
72

SIMULATION OF HORSE-FENCE CONTACT AND INTERACTION AFFECTING ROTATIONAL FALLS IN THE SPORT OF EVENTING

Vega, Gregorio Robles 01 January 2017 (has links)
Rotational falls, or somersault falls, have led to serious and fatal injuries during the cross-country phase of Eventing competitions. Research to improve the safety of the sport began in 2000 after five fatal injuries occurred in the 1999 Eventing season. These efforts led to safety devices such as air jackets, improved helmets, and frangible/deformable fences. The focus of this thesis is to develop a more complete understanding of the horse-fence interaction as the approach motion transitions to a rotational fall. To achieve this, a large distribution of inertial properties was compiled through the development of a cylinder-based inertia approximation and a citizen science effort to gather equine geometrical measurements through a survey distributed by the United States Eventing Association (USEA). Furthermore, fundamental kinematic properties of the horse and rider were gathered from the literature. These distributions were used to conduct a Monte Carlo analysis to examine if the approach conditions of the horse and rider would result in a transition to a rotational fall upon horse-fence contact. Through the analysis the sensitivity of the main control parameters was explored to determine the dominant variables in the transition.
73

UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATOR

Cummings, Jonathan 07 November 2014 (has links)
This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and active compliance. This is accomplished through incorporating series elastic actuators in its arms and torso joints, improving the mechanical design to reduce backlash, and incorporating impedance controllers in the robot. The focus of this thesis is the development of the mechanical, sensor, and controller design for the uBot-7 platform. An impedance controller is developed and evaluated on a bench top prototype series elastic actuator.
74

Development of Electronics, Software, and Graphical User Control Interface for a Wall-Climbing Robot

Tesillo, Lynda Beatriz 01 June 2015 (has links)
The objective for this project is to investigate various electrical and software means of control to support and advance the development of a novel vacuum adhesion system for a wall-climbing robot. The design and implementation of custom electronics and a wirelessly controlled real-time software system used to define and support the functionalities of these electronics is discussed. The testing and evaluation of the overall system performance and the performance of the several different subsystems developed, while working both individually and cooperatively within the system, is also demonstrated.
75

Implementation of a Conrad Probe on a Boundary Layer Measurement System

Ulk, Charles Rocky 01 August 2010 (has links)
This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for pressure probe anemometry in swept wing boundary layers. Following calibration, the probe was adapted for use on an autonomous boundary layer measurement device including development of revised software. Utilizing this setup, boundary layer measurements were obtained on both swept and unswept models in a wind tunnel with a maximum operational velocity of 110 mph corresponding to a dynamic pressure of 30 psf. The wind tunnel results showed that the Conrad probe could measure in-plane flow magnitude for both laminar and turbulent boundary layers with sufficient uncertainty and spatial resolution for its intended application in flight testing. The Conrad probe and boundary layer measurement system were then employed for flight tests of a 30 degree swept wing model carried beneath an aircraft at a flight Mach number of 0.52 and altitudes up to 44,000 ft. The flight test results from the Conrad probe allowed for the successful determination of overall boundary layer thickness, laminar/turbulent conditions, and degree of flow turning within the boundary layer. It is believed that the rapid data acquisition and low energy consumption of the Conrad probe implementation on the boundary layer measurement system make it a good alternative for future flight testing requiring measurements of in-plane flow velocity magnitude and direction.
76

Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior

Jensen, Brian D. 24 June 2003 (has links) (PDF)
The purpose of this research is to identify the configurations of several mechanism classes which result in bistable behavior. Bistable mechanisms have use in many applications, such as switches, clasps, closures, hinges, and so on. A powerful method for the design of such mechanisms would allow the realization of working designs much more easily than has been possible in the past. A method for the design of bistable mechanisms is especially needed for micro-electro-mechanical systems (MEMS) because fabrication and material constraints often prevent the use of simple, well-known bistable mechanism configurations. In addition, this knowledge allows designers to take advantage of the many benefits of compliant echanisms, especially their ability to store and release energy in their moving segments. Therefore, an analysis of a variety of mechanism classes has been performed to determine the configurations of compliant segments or rigid-body springs in a mechanism which result in bistable behavior. The analysis revealed a relationship between the placement of compliant segments and the stability characteristics of the mechanism which allows either analysis or synthesis of bistable mechanisms to be performed very easily. Using this knowledge, a method of type synthesis for bistable mechanisms has been developed which allows bistable mechanisms to be easily synthesized. Several design examples have been presented which demonstrate the method. The theory has also been applied to the design of several bistable micromechanisms. In the process of searching for usable designs for micro-bistable mechanisms, a mechanism class was defined, known as "Young" mechanisms, which represent a feasible and useful way of achieving micro-mechanism motion similar to that of any four-bar mechanism. Based on this class, several bistable micro-mechanisms were designed and fabricated. Testing demonstrated the ability of the mechanisms to snap between the two stable states. In addition, the mechanisms showed a high degree of repeatability in their stable positions.
77

Physical Testing of Potential Football Helmet Design Enhancements

Schuster, Michael Jeremy 01 June 2016 (has links) (PDF)
Football is a much loved sport in the United States. Unfortunately, it is also hard on the players and puts them at very high risk of concussion. To combat this an inventor in Santa Barbara brought a new design to Cal Poly to be tested. The design was tested in small scale first in order to make some preliminary conclusions about the design. In order to fully test the helmet design; however, full scale testing was required. In order to carry out this testing a drop tower was built based on National Operating Committee on Standards for Athletic Equipment, NOCSAE, specification. The drop tower designed for Cal Poly is a lower cost and highly portable version of the standard NOCSAE design. Using this drop tower and a 3D printed prototype the new design was tested in full scale.
78

A Model Predictive Control Approach to Roll Stability of a Scaled Crash Avoidance Vehicle

Noxon, Nikola John Linn 01 June 2012 (has links) (PDF)
In this paper, a roll stability controller (RSC) is presented based on an eight degree of freedom dynamic vehicle model. The controller is designed for and tested on a scaled vehicle performing obstacle avoidance maneuvers on a populated test track. A rapidly-exploring random tree (RRT) algorithm is used for the vehicle to execute a trajectory around an obstacle, and examines the geographic, non-homonymic, and dynamic constraints to maneuver around the obstacle. A model predictive controller (MPC) uses information about the vehicle state and, based on a weighted performance measure, generates an optimal trajectory around the obstacle. The RSC uses the standard vehicle state sensors: four wheel mounted encoders, a steering angle sensor, and a six degree of freedom inertial measurement unit (IMU). An emphasis is placed on the mitigation of rollover and spin-out, however if a safe maneuver is not found and a collision is inevitable, the program will run a brake command to reduce the vehicle speed before impact. The trajectory is updated at a rate of 20 Hz, providing improved stability and maneuverability for speeds up to 10 ft/s and turn angles of up to 20°.
79

High-Resolution, Non-contact Angular Measurement System for PSA/RSA

Sloat, Ronald D 01 March 2011 (has links) (PDF)
A non-contact angular measurement system for Pitch Static Attitude (PSA) and Roll Static Attitude (RSA) of hard disk drive sliders is designed and built. Real-time sampling at over 15 KHz is achieved with accuracy of +/- 0.05 degrees over a range of approximately 2-3 degrees. Measuring the PSA and RSA is critical for hard drive manufacturers to control and improve the quality and reliability of hard drives. Although the hard drive industry is able to measure the PSA and RSA at the subassembly level at this time, there is no system available that is able to measure PSA/RSA at the final assembly level. This project has successfully demonstrated a methodology that the PSA/RSA can be reliably measured in-situ using a laser and position sensitive detector (PSD) technology. A prototype of the measurement system has been built using simple and inexpensive equipment. This device will allow a continuous measurement between the parked position on the ramp and the loading position just off of the disk surface. The measured data can be used to verify manufacturing processes and reliability data.
80

Design, Modeling and Control of a Two-Wheel Balancing Robot Driven by BLDC Motors

Refvem, Charles T 01 December 2019 (has links) (PDF)
The focus of this document is on the design, modeling, and control of a self-balancing two wheel robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors. The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall effect sensors and encoders allowing determination of the angle and angular velocity of each wheel. Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. The control algorithm is designed to minimize deviations from a set point specified by an external radio remote control, which allows the remote operator to steer and drive the bot wirelessly while it remains balanced. Multiple dynamic models are proposed in this analysis, and the selected model is used to develop a linear-quadratic regulator based state-feedback controller to perform reference tracking. Controller tracking performance is improved by incorporating a prefilter stage between the setpoint command from the remote control and the state-feedback controller. Modeling of the actuator dynamics is considered brie y and is discussed in relation to the control algorithm used to balance the robot. Electrical and software design implementations are also presented with a focus on effective implementation of the proposed control algorithms. Simulated and physical testing results show that the proposed balance bot and controller design are not only feasible but effective as a means of achieving robust performance under dynamic tracking profiles provided by the remote control.

Page generated in 0.1307 seconds