• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From Current Collectors to Electrodes : Aluminium Rod Structures for Three-dimensional Li-ion Micro-battery Applications

Oltean, Gabriel January 2014 (has links)
The potential use of 3D aluminium nanorod structures as current collectors and negative electrodes for 3D Li-ion micro-batteries was studied based on the use of relatively simple and cost-effective electrochemical and sol-gel deposition techniques. Aluminium rod structures were synthesised by galvanostatic electrodeposition using commercial porous membranes as templates. It was shown that the use of a short (i.e., 50 ms long) potential pulse (i.e., -0.9 V vs. Al3+/Al) applied prior to a pulsed current electrochemical deposition gave rise to homogeneous deposits with more even rod heights.  Electrophoretic and sol-gel deposition of TiO2 on the same substrates were also studied. The use of the sol-gel technique successfully resulted in a thin coating of amorphous TiO2 on the Al nanorod current collector, but with relatively small discharge capacities due to the amorphous character of the deposits. Electrophoretic deposition was, however, successful only on 2D substrates. Anodisation of titanium was used to prepare 3D TiO2 nanotube electrodes, with a nanotube length of 9 um and wall thickness of 50 nm. The electrodes displayed high and stable discharge capacities of 460 µAh/cm2 at a 0.1 C rate upon prolonged cycling with good rate capability. The 3D aluminium nanorod structures were tested as negative electrodes for Li-ion cells and the observed capacity fading was assigned to trapping of LiAl alloy inside the aluminium electrode caused by the diffusion of lithium into the electrode, rather than to pulverisation of the aluminium rods. The capacity fading effect could, however, be eliminated by decreasing the oxidation potential limit from 3.0 to 1.0 V vs. Li+/Li. A model for the alloying and dealloying of lithium with aluminium was also proposed. Finally, a proof-of-concept for a full 3D Li-ion micro-battery with electrodes of different geometries was demonstrated. The cell comprised a positive electrode, based on LiFePO4 deposited on a carbon foam current collector, with an area gain factor an order of magnitude larger than that for the Al nanorod negative electrode. This concept facilitates the balancing of 3D Li-ion cells as the positive electrode materials generally have significant lower specific energy densities than the negative electrodes.
2

Studies on Electrochemical Reactions Using Concentrated Aqueous Electrolytes / 濃厚電解質水溶液環境における電気化学反応に関する研究

Inoguchi, Shota 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23199号 / 工博第4843号 / 新制||工||1756(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 邑瀬 邦明, 教授 宇田 哲也, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Applications of Surface Analysis Techniques to the Study of Electrochemical Systems

Johnston, Matthew Gerard 14 July 2004 (has links)
No description available.
4

Réalisation de cellules solaires nanostructurées à base de nanofils de ZnO. Matériaux et propriétés / Realization of photovoltaique cells based on ZnO nanowires

Sanchez, Sylvia 10 September 2012 (has links)
Les cellules solaires nanostructurées ont été développées pour réduire le coût du photovoltaïque et le rendre compétitif aux autres sources d’énergies. Dans ce but deux cellules solaires ont été étudié durant la thèse: la cellule « eta » (Extremely Thin Absorber) et la cellule hybride à polymères. Dans un premier temps, des couches 2D et nanofils de ZnO ont été réalisés par voie électrochimique sur des substrats verre/TCO (oxyde transparent et conducteur). Il est montré que la température du bain, la densité de charge et la concentration de l’électrolyte support (KCl) infleuncent la morphologie, composition, cristallisation et propriétés optiques des couches. Les films déposés à 0,1 M KCl et à T ≥ 50°C, présente de bonnes propriétés physico-chimiques. La couche 2D est ensuite utilisée pour la croissance des nanofils de ZnO et leurs dimensions sont ajustées avec la moprhologie et l’épaisseur de cette couche. L’électrolyte support et la densité de charge permettent également de contrôler les dimensions des nanofils. Dans un deuxième temps, les nanofils de ZnO ont été photo-sensibilisés par deux types d’absorbeurs : CuInS2 (CIS) et Cu2ZnSnS4 (CZTS). Ils ont été réalisés par différentes méthodes : SILAR (Successive Ion Layer Adsorption and Reaction), électrodépôt et dépôt de nanoparticules pré-synthétisées (pour CIS). Les films préparés par voie SILAR sont très uniformes autour des nanofils. Tandis que ceux réalisés par électrodépôt sont moins homogènes mais de très bonnes qualités cristallines. Grâce à la fonctionnalisation des nanofils, une couche de nanoparticules de CuInS2 très uniforme est déposée. Les cellules « eta » réalisées avec ces structures cœur/coquille montrent un effet photovoltaïque. Les films de ZnO électrodéposés ont été intégrés dans des cellules solaires hybrides à polymères sur substrats verres et plastiques. Ces cellules ont montré de bons rendements et une haute stabilité. / Nanostructured solar cells have been proposed as a solution for photovoltaic cost reduction and to rival the cost of grid-powered electricity. Regarding this challenge, two kinds of solar cells have been studied within the PhD thesis: the Extremely Thin Absorber Solar cells (eta) and the polymer hybrid solar cell. First, we are reporting on the electrochemical deposition of ZnO 2D layers and nanowires on glass substrates covered with TCO (Transparent Conducting Oxide). It is shown that the bath temperature and the supporting electrolyte concentration (KCl) play an important role on the ZnO layer morphology, composition, crystallization and optical properties. The film deposited from 0.1 M KCl and T ≥ 50°C exhibit very good optical and structural properties. These 2D layers are used for consequent ZnO nanowires electrodeposition and their dimensions could be tailored by the seed layer morphology and thickness. The supporting electrolyte concentration and the passed charge density could be additionally used to control their dimensions. Then, the ZnO nanowires have been photosensitized with two absorbers: CuInS2 (CIS) and Cu2ZnSnS4 (CZTS). These materials are prepared by: Successive Ion Layer Adsorption and Reaction (SILAR), electrodeposition and nanoparticules deposition (for CIS). The SILAR films are very uniform around the nanowires. The layers prepared by electrodeposition are less uniform but exhibit very good structural properties. Uniform thin film of CuInS2 nanoparticules are deposited onto functionalized ZnO nanowires. The eta solar cells fabricated with these core/shell nanostructures have shown a photovoltaic effect. The ZnO thin films have been integrated in hybrid solar cells on flexible and rigid substrates. These cells show good power conversion efficiency and a high stability.

Page generated in 0.1373 seconds