• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 96
  • 96
  • 86
  • 77
  • 37
  • 29
  • 21
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Atomic resolution microscopy using electron energy-loss spectroscopy

Witte, C. January 2008 (has links)
This thesis explores the theory of electron energy-loss spectroscopy (EELS) in atomic resolution electron microscopy. / The first unequivocal evidence of the effective nonlocal potential in momentum-transfer-resolved EELS is presented. For suitable geometries, the nonlocal potential can be well approximated by a local potential. In scanning transmission electron microscopy (STEM) the validity of this is mainly influenced by the detector size and, contrary to conventional wisdom, a thin annular detector does not allow direct image interpretation. It is found that the best way to ensure the potential is well approximated by a local potential is to use a detector with a large collection angle. / To simplify computation and interpretation it is desirable to make the single-channelling approximation. In this approximation only the elastic scattering of the probe before the ionisation event is modelled. It is shown how this approximation breaks down for the small detectors used in momentum-transfer-resolved EELS and this is confirmed with experimental results. Double-channelling calculations, where the channelling of the probe both before and after the ionisation event are modelled, can also be simulated. An alternative approximation for small detectors that includes double channelling and is more applicable for momentum-transfer-resolved EELS is also presented. / Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. Incorporating fine structure into channelling theory allows the exploration of the effects of channelling on fine structure. The weighting of the two different spectra in graphite, as a function of incident probe tilt in momentum-transfer-resolved EELS, is calculated using double-channelling simulations. This is combined with experimental data and multivariate statistical analysis to extract the two physical spectra, greatly simplifying the analysis of a large data set. / The effect of the nonlocal potential and channelling on site-specific electronic structure analysis by channelling EELS is examined. It is found that using a large on-axis detector can make the interaction effectively local, leading to a greater change in the spectra as a function of sample tilt. Alternatively offsetting the detector can achieve similar results but at the cost of greater statistical noise. Channelling calculations were combined with the program FEFF and the full energy differential cross section was calculated from first principles for the aluminium K edge as a function of sample tilt in nickel aluminate spinel. Qualitative agreement with experiment was found but quantitative agreement will require further investigation. / The theory of fine structure in STEM was examined, using strontium titanate to see how the high spatial resolution of STEM can be used in conjunction with energy-loss near-edge spectroscopy measurements. The possibility of imaging unoccupied electron molecular orbitals using STEM was also examined.
32

Electronic excitations in Topological Insulators studied by Electron Energy Loss Spectroscopy

January 2013 (has links)
abstract: Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample. / Dissertation/Thesis / M.S. Materials Science and Engineering 2013
33

Instrumentation for spectroscopy and experimental studies of some atoms, molecules and clusters

Urpelainen, S. (Samuli) 01 April 2010 (has links)
Abstract Experimental synchrotron radiation induced electron- and ion spectroscopies together with electron-ion and ion-ion coincidence techniques as well as electron energy loss spectroscopy have been used to study the electronic properties of several vapor phase samples. In this thesis studies of the electronic structure and fragmentation of Sb4 clusters, photo- and Auger electron spectroscopy of atomic Si and Pb as well as ultra high resolution VUV absorption of vapor phase KF molecules have been performed. The instrumentation and techniques used in the studies, especially the electron energy loss apparatus and the newly built ultra high resolution FINEST beamline branch, are presented.
34

Skutterudites thermoélectriques nanostructurées / Nanostructured skutterudites

Benyahia, Mohamed Seghir 05 October 2016 (has links)
Les matériaux thermoélectriques (TE) offrent la possibilité de convertir directement un flux de chaleur en courant électrique pour recycler la chaleur perdue, par exemple par nos automobiles. Les skutterudites AyFe4-xCoxSb12, (A = Ce, Yb, …, 0 ≤ y < 1; x < 4) sont déjà de bons matériaux thermoélectriques dans le domaine de température 400–800K. Pour améliorer le coefficient Seebeck, des nano-inclusions de InSb ou GaSb (~50 nm) ont été générées à l’étape de frittage flash dans Ce0,3Fe1,5Co2,5Sb12 de type p. Elles n’ont pas eu l’effet escompté de filtrage en énergie des trous mais ont conduit à l’insertion de ~ 0,1 mol d’indium ou de gallium dans Ce0,3Fe1,5Co2,5Sb12 et à un facteur de mérite TE amélioré ZTmax = 0,7 (+ 20%) dans les deux cas . Pour réduire la conductivité thermique et améliorer leur performances TE, nous avons entrepris d’élaborer pour Co0,91Ni0,09Sb3 et Yb0,25Co4Sb12 de type n des microstructures à grains ultrafins (~ 100 nm) par broyage à haute énergie et frittage flash (SPS). Pour inhiber la croissance des grains lors du frittage, nous avons utilisé des additifs nanométriques (10 – 20nm), soit ajoutés ex-situ (CeO2, SiO2), soit générés in-situ (Yb, Yb2O3). Des facteurs de mérite TE ZTmax = 0,8 (+ 30%) et ZTmax = 1,4 ( + 10%) ont été obtenus respectivement pour Co0,91Ni0,09Sb3 et Yb0,25Co4Sb12 / The thermoelectric materials (TE) offer the possibility to convert a heat flow into an electric current for recycling heat wasted for example, by our automobiles. AyFe4-xCoxSb12 skutterudites, (A = Ce, Yb, …, 0 ≤ y < 1; x < 4) are already good thermoelectric materials in the 400 – 800 K temperature range. To improve the Seebeck coefficient, nano-inclusions of InSb or GaSb (~ 50 nm) were introduced during the spark plasma sintering step in p type Ce0.3Fe1.5Co2.5Sb12. They did not led to expected charge carriers energy filtering and but led to the insertion of ~ 0.1 mol of indium or gallium in Ce0.3Fe1.5Co2.5Sb12 and to figure of merit improved by 20 % (ZTmax = 0.7) in both cases. To reduce the thermal conductivity and improve their TE performance, we have developed for n type Co0.91Ni0.09Sb3 et Yb0.25Co4Sb12 an ultrafine grained microstructure (~ 100 nm) by high energy milling and spark plasma sintering (SPS). To inhibit grain growth during sintering, we used nanoscale additives (10 – 20nm) either added ex-situ (CeO2, SiO2) or precipitated in-situ (Yb, Yb2O3). The figure of merit ZTmax = 0,8 (+ 30%) et ZTmax = 1,4 ( + 10%) were thus obtained respectively in Co0,91Ni0,09Sb3 and Yb0,25Co4Sb12
35

High-resolution transmission electron microscopy and electron energy loss spectroscopy of doped nanocarbons

Pierce, William Renton January 2014 (has links)
Graphene, a one-atom thick sheet of carbon, is the thinnest, strongest and most electrically conductive material ever discovered. Alongside carbon nanotubes it is part of the group of nanocarbons whose unique properties have sparked huge interest in possible applications, including electronic devices, solar cells and biosensors. Doping of these materials allows for the modification of their optical and electronic properties,which is crucial to realising these applications. Studying the properties of these doped materials at atomic resolution and finding controllable and industrially scalable routes to doping, such as low energy ion implantation, are thus essential if they are to becomethe materials of the future. In this thesis, highly localised optical enhancements in metal doped graphene are studied using energy-filtered transmission electron microscopy in a monochromated and aberration corrected electron microscope. The ideal conditions for imaging the low energy loss region of graphene using EFTEM are discussed and new methods to compensate for image artifacts when using this technique at high resolution are presented. Density functional theory is used to reveal new visible spectrum plasmon excitations in the electron energy loss spectra of boron and nitrogen doped nanocarbons. Atomic resolution scanning transmission electron microscopy and nanoscale electron energy loss spectroscopy are used to investigate controllable and defect-free substitutional doping of suspended graphene films through low energy ion implantation. Computational methods for filtering high angle annular dark field images are shown and software for the automated processing and spectroscopic analysis of these images is developed.
36

Interakce kovových nanočástic a rychlých elektronů / Interaction of metallic nanoparticles and fast electrons

Konečná, Andrea January 2015 (has links)
Scanning transmission electron microscopy is one of the essential techniques suitable not only for imaging of nanostructures, but also for various kinds of spectroscopy and, as it was recently demonstrated, nanomanipulation. In this thesis, we deal with an interaction of fast electrons and metallic spherical nanoparticles, specifically aluminium and gold nanospheres. First, we present both analytical and numerical calculations of electron energy loss spectra and their analysis for different parameters. The main part of the thesis is devoted to theoretical calculations of forces acting on the nanosphere due to the electron passing in its close proximity. Based on our novel results revealing a time evolution of the mechanical force, we also propose a possible mechanism responsible for the nanoparticle movement in electron microscopes.
37

Bridging the Gap: Probing Structure-Property Relationships in Functional Materials through Advanced Electron Microscopy Based Characterization

Deitz, Julia January 2018 (has links)
No description available.
38

Multiscale Electron Microscopy Imaging and Spectroscopy of Atomically Thin Layers at Heteroepitaxial Interfaces / Atomically Thin Layers at Heteroepitaxial Interfaces

El-Sherif, Hesham January 2021 (has links)
Two-dimensional (2D) materials have properties that are often different from their three-dimensional (3D) bulk form. Many of these materials are stable at ambient conditions, which allows them to be integrated with other 2D- or 3D-materials to form heterostructures. Integration of various dimensional materials attains unique electrical and optical properties that aid in developing novel electronic devices. The interface of the heterogeneous integration of these films can exhibit a weak van der Waals-like bonding. In this thesis, an advanced characterization (from atomic to millimeter resolution) of various dimensional materials with weakly bonded interfaces is developed and employed to understand their behavior at scale. First, a large-area single-crystal cadmium telluride thin film is grown incommensurately and strain-free to a sapphire substrate despite a significant 3.7% lattice mismatch. The film remarkably delaminates as a bulk single crystal film due to an atomically thin tellurium that spontaneously forms at the interface. Aberration-corrected electron microscopy and spectroscopy reveal both the van der Waals-like structure and bonding at the film/substrate interface. Second, a large-area atomically thin gallium is intercalated at the interface of epitaxial graphene. Correlative microscopy workflows are applied to understand the thickness uniformity and area coverage of the 2D–gallium over few millimeters of the sample. Utilizing multiple correlative methods, SEM image contrast is found to be directly related to the presence of the intercalated gallium. The origin of the SEM contrast is investigated as a function of the surface potential. Then, the heterostructure characterization is scaled up over a few square millimeter areas by segmenting SEM images, each acquired with nanometer-scale resolution. Additionally, transmission electron microscopy is applied to investigate the interface of gallium–SiC, the gallium air–stability, and the role of the substrate on the heteroepitaxial growth of 2D–gallium, which charts a path for further development of these materials. / Thesis / Doctor of Philosophy (PhD)
39

APPLICATIONS OF STATISTICAL LEARNING ALGORITHMS IN ELECTRON SPECTROSCOPY / TOWARDS CALIBRATION-INVARIANT SPECTROSCOPY USING DEEP LEARNING

Chatzidakis, Michael 06 1900 (has links)
Building on the recent advances in computer vision with convolutional neural networks, we have built SpectralNet, a spectroscopy-optimized convolutional neural network architecture capable of classifying spectra despite large temporal (i.e. translational, chemical, calibration) shifts. Present methods of measuring the local chemical environment of atoms at the nano-scale involve manual feature extraction and dimensionality reduction of the original signal such as: using the peak onset, the ratio of peaks, or the full-width half maximum of peaks. Convolutional neural networks like SpectralNet are able to automatically find parts of the spectra (i.e. features) of the spectra which maximally discriminate between the classes without requiring manual feature extraction. The advantage of such a process is to remove bias and qualitative interpretation in spectroscopy analysis which occurs during manual feature extraction. Because of this automated feature extraction process, this method of spectroscopy analysis is also immune to instrument calibration differences since it performs classification based on the shape of the spectra. Convolutional neural networks are an ideal statistical classifier for spectroscopy data (i.e. time-series data) due to its shared weighting scheme in neural network weights which is ideal for identifying local correlations between adjacent dimensions of the time-series data. Over 2000 electron energy loss spectra were collected using a scanning transmission electron microscope of three oxidation states of Mn. SpectralNet was trained to learn the differences between them. We prove generalizability by training SpectralNet on electron energy loss spectroscopy data from one instrument, and test it on a variety of reference spectra found in the literature with perfect accuracy. We also test SpectralNet against a wide variety of high noise samples which a trained human spectroscopist would find incomprehensible. We also compare other neural network architectures used in the literature and determine that SpectralNet, a dense-layer free neural network, is immune to calibration differences whereas other styles of network are not. / Thesis / Master of Applied Science (MASc) / Spectroscopy is the study of the interaction between photons or electrons and a material to determine what that material is made of. One advanced way to make accurate measurements down to the atomic scale is to use high energy electrons in a transmission electron microscope. Using this instrument, a special type of photograph can be taken of the material (a spectrograph or spectrum) which is detailed enough to identify which kinds of atoms are in the material. The spectrographs are very complicated to interpret and the human eye struggles to find patterns in noisy and low resolution data. Depending on which instrument that the spectrographs are taken on, the resulting spectrograph will also change which adds extra difficulty. In this study, advanced algorithms are used to identify which types of atoms can be identified in the noisy signal from the spectrograph regardless of which instrument is used. These algorithms (convolutional neural networks) are also used in self-driving cars for a similar task of identifying objects whereas in this study we use it for identifying atoms.
40

Electron Spectromicroscopy of Multipole Moments in Plasmonic Nanostructures / Spectromicroscopy of Plasmonic Multipoles

Bicket, Isobel Claire January 2020 (has links)
The geometry of a plasmonic nanostructure determines the charge-current distributions of its localized surface plasmon resonances (LSPR), thereby determining the device’s interactions with external electromagnetic fields. To target specific applications, we manipulate the nanostructure geometry to create different electromagnetic multipole moments, from basic electric and magnetic dipoles to more exotic higher order and toroidal multipoles. The nanoscale nature of the resonance phenomena makes electron beam spectromicroscopy techniques uniquely suited to probe LSPRs over a wide spectral range, with nanoscale spatial resolution. We use electron energy loss spectroscopy (EELS) in a monochromated scanning transmission electron microscope and cathodoluminescence spectroscopy (CL) in a scanning electron microscope to probe the near-field and far-field properties of LSPR. Electric dipoles within triangular prisms and apertures in Sierpiński fractals couple as the generation number is advanced, creating predictable spectral bands from hybridized dipole modes of parent generations with hierarchical patterns of high field intensity, as visualized in EELS. A magnetic dipole moment is engineered using a vertical split ring resonator (VSRR), pushing the limits of nanofabrication techniques. On this nanostructure we demonstrate the calculation of spatially resolved Stokes parameters on the emission of the magnetic dipole mode and a series of coupled rim modes. Coupling of the magnetic dipole mode of four VSRRs in a circular array creates an LSPR mode supporting the lesser-known toroidal dipole moment. We further probe the near-field configuration of this 3D array through tilting under the electron beam in EELS, and the far-field emission through CL of higher order rim modes. We also propose further configurations of five and six VSRRs to strengthen the toroidal dipole moment. All of the data presented herein was analyzed using custom Python code, which provides a unique graphical interface to 3D spectromicroscopy datasets, and a parallelized implementation of the Richardson-Lucy deconvolution algorithm. / Thesis / Doctor of Philosophy (PhD) / Certain types of metallic particles are capable of trapping light on a scale far below that which we can see; their light-trapping properties depend on their material and on their geometry. Using these tiny particles, we can manipulate the behaviour of light with greater freedom than is otherwise possible. In this thesis, we study how we can engineer the geometry of these particles to give predictable responses that can then be targeted towards specific applications. We study a fractal structure with predictable self-similar responses useful for high sensitivity detection of disease or hormone biomarkers; a resonating structure emulating a magnetic response which can be used in the design of unique new materials capable of bending light backwards and cloaking objects from sight; and a combination of these resonators in an array to demonstrate exotic electromagnetic behaviour still on the limit of our understanding.

Page generated in 0.0823 seconds