11 |
Three dimensional chemical analysis of nanoparticles using energy dispersive X-ray spectroscopySlater, Thomas Jack Alfred January 2015 (has links)
The aim of this thesis is to investigate the methodology of three dimensional chemical imaging of nanoparticles through the use of scanning transmission electron microscope (STEM) – energy dispersive X-ray (EDX) spectroscopy. In this thesis, an absorption correction factor is derived for spherical nanoparticles that can correct X-ray absorption effects. Quantification of EDX spectra of nanoparticles usually neglects X-ray absorption within the nanoparticle but may lead to erroneous results, thus an absorption correction is important for accurate compositional quantification. The absorption correction presented is verified through comparison with experimental data of Au X-ray peaks in spherical Au nanoparticles and is found to agree excellently. This absorption correction allows accurate compositional quantification of large ( > 100 nm) particles with STEM-EDX.Three dimensional chemical mapping is achievable through the use of EDX spectroscopy with electron tomography. Here, the methodology of STEM-EDX tomography is fully explored, with a focus on how to avoid artefacts introduced through detector shadowing and low counts per pixel. A varied-time acquisition scheme is proposed to correct for detector shadowing that is shown to provide a more constant intensity over a series of projections, allowing a higher fidelity reconstruction. The STEM-EDX tomography methodology presented is applied to the study of AgAu nanoparticles synthesized by the galvanic replacement reaction. The elemental distribution as a function of the composition of the as-synthesized nanoparticles is characterised and a reversal in the element segregated to the surface of the nanoparticles is found. The composition at which the reversal takes place is shown to correlate with a peak in the catalytic yield of a three component coupling reaction. It is hypothesized that a continuous Au surface results in the optimum catalytic conditions for the reaction studied, which guides the use of galvanically prepared AgAu nanoparticles as catalysts.
|
12 |
Quaternary Structure Analysis of Calcium/Calmodulin-Dependent Protein Kinase II Alpha by Cryo-Electron MicroscopyScott C. Bolton (5929526) 09 December 2019 (has links)
<div><div><div><p>Calcium-dependent protein kinase II alpha (CaMKIIα) is a highly abundant protein within the hippocampus, the region of the brain responsible for memory and learning. CaMKII has both structural and signaling roles in the regulation of the connective strength of synapses in excitatory neurons. It has a unique structure comprised of twelve subunits that form a dynamic assembly and is highly flexible. Its structural behavior has been shown to affect its activity, and a comprehensive mechanism of structure and function is still not fully understood. The determination of the quaternary structure of the CaMKII holoenzyme has been attempted for nearly 20 years by a variety of methods, with no one method giving a definitive structure. Problems in obtaining a structure originated with observation methods that estimated quaternary shape from low-resolution ensemble averages or required significant alteration of the protein to enforce a particular conformation. In this work, experiments were conducted to remove these limitations and provide a path towards the quaternary structure of CaMKIIα. Different expression and purification methods were evaluated to produce an optimal protocol for the generation of samples of concentrated, monodisperse, autoinhibited full-length wild-type CaMKIIα for study with cryo-electron microscopy. Strategies for microscopy sample preparation were investigated, including affinity girds, graphene-coated grids, and holey carbon grids. Lastly, experiments using negative stain electron microscopy, cryo-electron microscopy with single particle analysis, and cryo-electron tomography with subtomogram averaging were conducted to reveal the conditions required to produce an unambiguous three-dimensional structure. It was found that the assembly of the hexameric hub rings appeared to have flexible orientation, and superposition problems inherent in two-dimensional projection averaging requires the use of cryo-electron tomography to unravel the ambiguity in both hub orientation and catalytic module placement within the reconstructed volume. A subtomogram average of a limited number of particles revealed a hub domain that matched the morphology of prior reports, but the determination of catalytic module placement was not resolved. The cumulative result of this work establishes a strategy for the large-scale data collection needed to fully elucidate the structure of this challenging and fascinating protein.</p></div></div></div>
|
13 |
Multi-Dimensional Characterization of Bone and Bone-Implant InterfacesWang, Xiaoyue 12 1900 (has links)
Metallic bone implant devices are commonly used to tackle a wide array of bone failures in human patients. The success of such implants relies on the biomechanical and functional bonding between the living bone tissue and implant, a process defined as osseointegration. However, the mechanism of osseointegration is still under debate in the scientific community. One efficient method to help understand this complex process is to characterize the interface between human bones and implant devices after the osseointegration has been established, while another approach is to visualize mineralization in real-time under simulated body conditions. Both of these approaches to understand mineralization have been explored in this thesis.
Firstly, due to the inhomogeneous nature of bone and complex topography of implant surfaces, a suitable sample geometry for three-dimensional (3D) characterization was required to fully understand osseointegration. Electron tomography has been proven as an efficient technique to visualize the nanoscale topography of bone-implant interface in 3D. However, resulting from the thickness and shadowing effects of conventional transmission electron microscope (TEM) lamellae at high tilt angles and the limited tilt-range of TEM holders, “missing wedge” artifacts limit the resolution of final reconstructions. In Chapter 3, the exploration of a novel sample geometry to explore osseointegration is reported. Here, on-axis electron tomography based on a needle-shaped sample was applied to solve the problem of the “missing wedge”. This resulted in a near artifact-free 3D visualization of the structure of human bone and laser-modified titanium implant, showing bone growth into the nanotopographies of the implant surface and contributing to the evolution of the definition of osseointegration towards nano-osseointegration.
One of the key issues regarding the mechanism of osseointegration that remains is that of the chemical structure at the implant interface, namely distribution of calcium-based and carbon-based components at the interface and their origins. Thus, the second objective of this thesis aimed to push characterization techniques further to four dimensions (4D), by incorporating chemical information as the fourth dimension after the spatial X,Y,Z coordinates. In Chapter 4, correlative 4D characterization techniques including electron energy-loss spectroscopy (EELS) tomography and atom probe tomography (APT) and other spectroscopy techniques were used to probe the nanoscale chemical structure of the bone-implant interface. This work uncovered a transitional biointerphase at the bone-implant interface, consisting of morphological and chemical differences compared to bone away from the interface. Also, a TiN layer between the surface oxide and bulk metal was identified in the laser-modified commercial dental implant. Both findings have implications for the immediate and long-term osseointegration.
Since bone formation at the implant interface is a dynamic process, which includes calcium phosphates (CaP) biomineralization as a basis of these reactions, the third objective of this work focused on exploring real-time mineralization processes. Liquid-phase transmission electron microscopy (LP-TEM) is a promising technique to enable real-time imaging with nanoscale spatial resolution and sufficient temporal resolution. In Chapter 5, by using this technique, we present the first real-time imaging of CaP nucleation and growth, which is a direct evidence to demonstrate that CaP mineralization occurs by particle attachment.
Overall, this thesis has applied state-of-the-art advanced microscopy techniques to enhance the knowledge and understanding of osseointegration mechanisms by investigating established biointerfaces and real-time mineralization. The developed correlative 4D tomography workflow is transferable to study other interfacial applications in materials science and biological systems, while the LP-TEM work forms a basis for further mineralization research. / Thesis / Doctor of Philosophy (PhD)
|
14 |
3D Reconstruction of the Magnetic Vector Potential of Magnetic Nanoparticles Using Model Based Vector Field Electron TomographyKC, Prabhat 01 June 2017 (has links)
Lorentz TEM observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials of the sample. These potentials can be extracted from the electron wave phase shift by separating electrostatic and magnetic phase shifts, followed by 3D tomographic reconstructions. In past, Vector Field Electron Tomography (VFET) was utilized to perform the reconstruction. However, VFET is based on a conventional tomography method called filtered back-projection (FBP). Consequently, the VFET approach tends to produce inconsistencies that are prominent along the edges of the sample. We propose a model-based iterative reconstruction (MBIR) approach to improve the reconstruction of magnetic vector potential, A(r). In the case of scalar tomography, the MBIR method is known to yield better reconstructions than the conventional FBP approach, due to the fact that MBIR can incorporate prior knowledge about the system to be reconstructed. For the same reason, we seek to use the MBIR approach to optimize vector field tomographic reconstructions via incorporation of prior knowledge. We combine a forward model for image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to deduce the vector potential. A detailed study of reconstructions from simulated as well as experimental data sets is provided to establish the superiority of the MBIR approach over the VFET approach.
|
15 |
In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials / Microscopie électronique à transmission in situ et 3d environnementale de nano-catalyseurs Pd-Al2O3 : Tomographie rapide avec applications à d'autres systèmes catalytiques dans des conditions d'exploitation et à des nanomatériaux sensibles au faisceau d'électronsKoneti, Siddardha 05 December 2017 (has links)
Au début du XXIème siècle, la Microscopie Electronique à Transmission en mode Environnemental (ETEM) est devenue l’une des techniques les plus fiables de caractérisation de nanomatériaux dans des conditions simulant leur vie réelle. L’ETEM est maintenant en mesure de suivre l’évolution dynamique des nanomatériaux dans des conditions variables comme l’exposition à des températures élevées, l’observation en milieux liquide ou gazeux à diverses pressions. Parmi différents domaines de recherche et développement concernés, la catalyse peut bénéficier de manière significative des avancées permises par la microscopie électronique environnementale. Cette thèse, dédiée au développement de l’ETEM au laboratoire MATEIS, a commencé avec l’étude du système catalytique Pd-alumine. Les nanoparticules de Pd déposées sur alpha -Al2O3 et delta-Al2O3 sont très utilisées en physicochimie avec un impact environnemental important : en particulier dans le domaine de l’hydrogénation sélective, pour la synthèse de polymères ou l’hydrogénation de CO2 pour la production de méthane. Nous avons tout d’abord effectué des analyses 2D aux différentes étapes du processus de synthèse du catalyseur : imprégnation du précurseur, séchage et chauffage pour la calcination dans l’air à la pression atmosphérique. La motivation de cette approche a été de comparer des analyses post mortem avec des traitements en ETEM où l’évolution des nanoparticules peut être mesurée in situ et pas seulement « avant » et « après ». De manière générale, les études faites en ETEM en 2D donnent un aperçu limité sur la morphologie des objets et la distribution spatiale des nanoparticules supportées. Nous avons développé une nouvelle approche d’acquisition rapide pour collecter dans des temps très courts des séries d’images sous différents angles de vue pour la tomographie électronique, la rapidité de cette acquisition étant un prérequis pour appréhender correctement la morphologie d’un nano-système au cours de son évolution dynamique in situ. La technique a ensuite été utilisée pour l’étude de plusieurs systèmes où une acquisition tridimensionnelle rapide est indispensable, notamment sur un sujet concernant un enjeu sociétal important, la dépollution des moteurs diesel : l’oxydation de la suie a été étudiée in situ sur des supports à base de zircone entre 400 et 600°C et une pression de 2 mbar d’oxygène à différents degrés de combustion, ce qui a permis d’extraire des données cinétiques telle que l’énergie d’activation du processus. La tomographie électronique rapide a été également appliquée à des matériaux sensibles au faisceau électronique, comme des nanocomposites polymères et des objets biologiques, montrant le large spectre d’applications possibles pour cette technique, qui constitue un pas important vers la caractérisation operando 3D de nanomatériaux en temps réel. / In the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials.
|
16 |
Quantitative Messung von Dotiergebieten in FIB-präparierten Silizium-Halbleiterbauelementen mittels ElektronenholographieLenk, Andreas 21 November 2008 (has links) (PDF)
Das Einbringen von Dotierstoffen in das Substratmaterial ist einer der wichtigsten Teilprozesse in der Halbleiterindustrie. Größe, Lage und Konzentration elektrisch aktiver Dotiergebiete bestimmen wesentlich die Eigenschaften der mikroelektronischen Basisbauelemente und damit die Funktionalität der Endprodukte. Die kontinuierliche Verkleinerung dieser Bauelemente zieht steigende Anforderungen an die Präzision bei ihrer Herstellung nach sich. Analyseverfahren, mit denen die genannten Kenngrößen gemessen werden können, sind aus diesem Grund von hoher Bedeutung. Elektronenholographie ist eine dafür prinzipiell geeignete Messmethode, da sie eine zweidimensionale Vermessung der durch die Dotanden veränderten Potentialstruktur des Halbleiters in der geforderten Ortsauflösung von wenigen nm erlaubt. Ein Teil dieser Arbeit befasst sich mit der Optimierung der für die holographische Untersuchung wichtigen Parameter. Zu diesem Zweck werden sowohl präparative Aspekte wie geeignete Probendicke und Struktur der Proben als auch messtechnische Aspekte wie kohärente Beleuchtung und TEM-Parameter diskutiert. Während sich der Hauptteil der Arbeit mit den dabei gewonnenen wissenschaftlichen Erkenntnissen befasst, werden im Anhang die bei Präparation und Messung wichtigen Details ausführlich beschrieben. Ein wesentliches Problem bei der elektronenholographischen Messung stellt die Präparation der Objekte für die Untersuchung im TEM dar. Die einzige sinnvolle Möglichkeit für eine industrielle Anwendung ist die Zielpräparation mit dem fokussierten Ionenstrahl („FIB“), da keine andere Methode vergleichbar effizient arbeitet. Leider wird bei dieser Art von Präparation die Probe von der Oberfläche bis in eine gewisse Tiefe sowohl strukturell als auch elektrisch verändert. Diese Artefakte beeinflussen das Ergebnis der hochsensiblen holographischen Messung. Um die gewonnenen Daten dennoch verlässlich quantitativ auswerten zu können, muss klar zwischen ursprünglichen Objekteigenschaften und präparativ induzierten Schädigungen unterschieden werden. Um dieses Ziel zu erreichen, wurden durch die FIB-Präparation hervorgerufene Schädigungen der Probe systematisch analysiert. Mit Hilfe von SIMS konnte die Tiefenverteilung des beim Ionenschneiden eingedrungenen Fremdmaterials gemessen werden. Es wurden Querschnitte von FIB-Proben durch konventionelle, holographische sowie holographisch-tomographische Abbildung im TEM an einer eigens dafür entwickelten nadelförmigen Probengeometrie untersucht. Dabei wurden die entstandenen strukturellen und elektrischen Veränderungen beobachtet und quantitativ charakterisiert. Der Einsatz von Tomographie erlaubte schließlich die Messung der Potentialverteilung im Inneren der Nadeln ohne eine Verfälschung durch Projektionseffekte. Es wurde gezeigt, dass die über die Schädigungen gewonnenen Erkenntnisse für eine Korrektur der holographischen Daten genutzt werden können. Dazu wurden entsprechende Untersuchungen an verschiedenen Bauelementen aus der Halbleiterindustrie durchgeführt. Die korrigierten Ergebnisse wurden dabei stets mit den theoretischen Erwartungen verglichen.
|
17 |
Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-ElektronentomographieGruska, Manuela 18 May 2010 (has links) (PDF)
Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009].
Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert.
Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen.
Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im
Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar.
Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist.
|
18 |
Imagerie tridimensionnelle nanométrique de matériaux et dispositifs à semi-conducteurs par tomographie électronique / 3D nanoimaging of semiconductor devices and materials by electron tomographyHaberfehlner, Georg 24 September 2013 (has links)
Ces travaux de doctorat concernent le développement de la tomographie électronique appliquée à la nano-caractérisation tridimensionnelle de dispositifs à semi-conducteurs et de matériaux pour la micro et la nanoélectronique. Les contributions les plus significatives de ces travaux sont (i) l'exploration et l'application de différents modes de contraste en microscopie électronique à transmission (TEM) pour des applications spécifiques liées au semi-conducteurs et (ii) l'investigation de nouvelles pistes pour améliorer encore la résolution spatiale, en particulier en adaptant les schémas d'acquisition en tomographie. Le TEM en balayage (STEM), basé sur des mesures annulaires aux forts angles et en champ sombre (HAADF) a été mis en œuvre pour observer des dopants dont le numéro atomique est typiquement largement supérieur à celui de la matrice (en silicium), et nous avons combiné le TEM résolu en énergie (EFTEM) dans un régime de faible perte d'énergie des électrons avec les techniques de tomographie afin de reconstruire les spectres de perte d'énergie locaux, en chaque voxel. La tomographie double-axe a été expérimentalement mise en œuvre pour améliorer la résolution spatiale, et le potentiel de la tomographie à axe multiple a été démontré, grâce aux simulations. Enfin, des algorithmes de reconstruction basés sur la minimisation de la variation totale ont été appliqués à la tomographie électronique. Les analyses effectuées comprennent les transistors triple-grille, les nanofils III-V, les capacités à base de nanofils de silicium et le silicium sur-dopé au sélénium, un matériau utilisé pour des applications optoélectroniques. / In this thesis electron tomography is developed and applied as a tool for three-dimensional nanoscale characterization of semiconductor materials and devices. The major contributions of this thesis are the exploration and application of transmission electron microscopy (TEM) contrast techniques for specific semiconductor applications and the exploration of routes towards improving spatial resolution, in particular by adapting tomographic acquisition schemes. As contrast techniques we apply high-angle annular dark-field (HAADF) scanning TEM (STEM) for investigations of heavy dopants in a lighter environment and we combine spectral low-loss energy-filtered TEM (EFTEM) with tomography and explore the features of reconstructed low-loss spectra. For resolution improvement we experimentally apply dual-axis electron tomography and investigate the potential of multiple-axis tomography based on simulations. Furthermore reconstruction algorithms based on totalvariation minimization are applied to electron tomography. Samples investigated in this work include tri-gate transistors, III-V nanowire heterostructures and silicon nanowire based capacitors as well as selenium-hyperdoped silicon, a material for optoelectronic applications.
|
19 |
Advanced 3D and in-situ TEM approaches applied to carbon-based and zeolitic nanomaterials / Microscopie électronique 3D et environnementale de nanomatériaux carbones et zéolitiquesMelinte, Georgian 18 September 2015 (has links)
Dans le cadre de cette thèse, des techniques avancées de Microscopie électronique à transmission (MET)ont été utilisées dans le but de caractériser et de fabriquer de nouveaux nanomatériaux pour des applications dans les domaines de la nanoélectronique et de la catalyse. Trois types de matériaux fonctionnalisés sont étudiés: le graphène multifeuillets (FLG– Few-Layer Graphene) avec des nanomotifs,des nanotubes de carbone (CNTs - Carbon Nanotubes en anglais) et des zéolithes mésoporeux. La formation de nanomotifs de tranchées et de tunnels sur des flocons de FLG à l’aide de nanoparticules(NPs) de fer est étudiée dans une approche qui combine la tomographie électronique et la MET environnementale. Le rôle des facettes de la nanoparticule et des paramètres topographiques de FLG a été déterminé du point de vue quantitatif, ce qui a mené à la mise en évidence du mécanisme de formation des nanomotifs de tranchées et de tunnels. Le transfert de nanoparticules à base de métal entre deux nanostructures de carbone a été également étudié, en temps réel, en employant un porte-échantillon MET couplé avec un dispositif STM (Scanning Tunneling Microscope en anglais). Le protocole de contrôle du transfert des nanoparticules, les transformations chimiques et structurales subies par celles-ci, le mécanisme de croissance de nouvelles nanoparticules et d’autres phénomènes liés à ces effets ont été étudiés avec attention. La dernière partie de la thèse est centrée sur l’étude de la tomographie électronique à faible dose de la porosité induite dans deux classes de zéolithes, ZSM-5 et zéolithe Y, en utilisant un traitement chimique novateur à base de fluor. / In this thesis, advanced Transmission Electron Microscopy (TEM) techniques are used to characterize and fabricate new nanomaterials with applications in nanoelectronics and catalysis. Three types of functionalized materials are investigated: nanopatterned few-layer graphene (FLG), carbon nanotubes(CNTs) and mesoporous zeolites. The nanopatterning process of FLG flakes by iron nanoparticles (NPs) is studied using an approach combining electron tomography (ET) and environmental TEM. The role of the nanoparticle faceting and of the FLG topographic parameters has been quantitatively determined leading to the first determination of the operating mechanism of the patterning process. The mass transfer of metallic-based NPs between two carbon nanostructures was studied as well in real-time by using a TEMSTMholder. The protocol of controlling the mass transfer, the chemical and structural transformations of the NPs, the growth mechanism of the new NPs and other related phenomena were carefully investigated.The last part deals with the low-dose ET investigation of the porosity induced in two classes of zeolites,ZSM-5 and zeolite Y, by an innovative fluoride-based chemical treatment.
|
20 |
Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-ElektronentomographieGruska, Manuela 31 March 2010 (has links)
Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009].
Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert.
Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen.
Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im
Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar.
Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist.
|
Page generated in 0.0868 seconds