Spelling suggestions: "subject:"elektronentomographie"" "subject:"elektronenholographie""
1 |
Quantitative Messung von Dotiergebieten in FIB-präparierten Silizium-Halbleiterbauelementen mittels ElektronenholographieLenk, Andreas 21 November 2008 (has links) (PDF)
Das Einbringen von Dotierstoffen in das Substratmaterial ist einer der wichtigsten Teilprozesse in der Halbleiterindustrie. Größe, Lage und Konzentration elektrisch aktiver Dotiergebiete bestimmen wesentlich die Eigenschaften der mikroelektronischen Basisbauelemente und damit die Funktionalität der Endprodukte. Die kontinuierliche Verkleinerung dieser Bauelemente zieht steigende Anforderungen an die Präzision bei ihrer Herstellung nach sich. Analyseverfahren, mit denen die genannten Kenngrößen gemessen werden können, sind aus diesem Grund von hoher Bedeutung. Elektronenholographie ist eine dafür prinzipiell geeignete Messmethode, da sie eine zweidimensionale Vermessung der durch die Dotanden veränderten Potentialstruktur des Halbleiters in der geforderten Ortsauflösung von wenigen nm erlaubt. Ein Teil dieser Arbeit befasst sich mit der Optimierung der für die holographische Untersuchung wichtigen Parameter. Zu diesem Zweck werden sowohl präparative Aspekte wie geeignete Probendicke und Struktur der Proben als auch messtechnische Aspekte wie kohärente Beleuchtung und TEM-Parameter diskutiert. Während sich der Hauptteil der Arbeit mit den dabei gewonnenen wissenschaftlichen Erkenntnissen befasst, werden im Anhang die bei Präparation und Messung wichtigen Details ausführlich beschrieben. Ein wesentliches Problem bei der elektronenholographischen Messung stellt die Präparation der Objekte für die Untersuchung im TEM dar. Die einzige sinnvolle Möglichkeit für eine industrielle Anwendung ist die Zielpräparation mit dem fokussierten Ionenstrahl („FIB“), da keine andere Methode vergleichbar effizient arbeitet. Leider wird bei dieser Art von Präparation die Probe von der Oberfläche bis in eine gewisse Tiefe sowohl strukturell als auch elektrisch verändert. Diese Artefakte beeinflussen das Ergebnis der hochsensiblen holographischen Messung. Um die gewonnenen Daten dennoch verlässlich quantitativ auswerten zu können, muss klar zwischen ursprünglichen Objekteigenschaften und präparativ induzierten Schädigungen unterschieden werden. Um dieses Ziel zu erreichen, wurden durch die FIB-Präparation hervorgerufene Schädigungen der Probe systematisch analysiert. Mit Hilfe von SIMS konnte die Tiefenverteilung des beim Ionenschneiden eingedrungenen Fremdmaterials gemessen werden. Es wurden Querschnitte von FIB-Proben durch konventionelle, holographische sowie holographisch-tomographische Abbildung im TEM an einer eigens dafür entwickelten nadelförmigen Probengeometrie untersucht. Dabei wurden die entstandenen strukturellen und elektrischen Veränderungen beobachtet und quantitativ charakterisiert. Der Einsatz von Tomographie erlaubte schließlich die Messung der Potentialverteilung im Inneren der Nadeln ohne eine Verfälschung durch Projektionseffekte. Es wurde gezeigt, dass die über die Schädigungen gewonnenen Erkenntnisse für eine Korrektur der holographischen Daten genutzt werden können. Dazu wurden entsprechende Untersuchungen an verschiedenen Bauelementen aus der Halbleiterindustrie durchgeführt. Die korrigierten Ergebnisse wurden dabei stets mit den theoretischen Erwartungen verglichen.
|
2 |
Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-ElektronentomographieGruska, Manuela 18 May 2010 (has links) (PDF)
Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009].
Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert.
Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen.
Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im
Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar.
Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist.
|
3 |
Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-ElektronentomographieGruska, Manuela 31 March 2010 (has links)
Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009].
Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert.
Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen.
Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im
Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar.
Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist.
|
4 |
Interface Tomography of III-V Semiconductor HeterostructuresNicolai, Lars 22 February 2023 (has links)
Die Untersuchung von III-V-Heterostruktur-Grenzflächen spielt aufgrund des starken Einflusses der Grenzflächen auf die Eigenschaften von Halbleiterbauelementen eine elementare Rolle. Die Transmissionselektronenmikroskopie (TEM) hat sich als eines der geeignetsten Methoden für die Analyse von Grenzflächen erwiesen. Jedoch stellt die Interpretation von zweidimensionalen Projektionen, insbesondere bei dreidimensionalen (3D) Strukturen, eine Herausforderung dar, da die Information über die Tiefe in der Projektion verloren geht. In dieser Arbeit wird diskutiert, dass Grenzflächen als 3D Objekte gesehen werden können, insbesondere bei großen Rauheiten oder chemischen Durchmischungen. Zur Charakterisierung von vergrabenen III-V-Halbleitergrenzflächen wurde eine neue analytische Methode auf Basis der Elektronentomographie entwickelt.
Diese Methode wird anhand eines (Al,Ga)As/GaAs-Mehrschichtsystems als Fallstudie vorgestellt. Es wird gezeigt, dass die tomographische Rekonstruktion von Grenzflächen ausgenutzt werden kann, um sogenannte Iso-Konzentrationsflächen zu erhalten, welche die Lage einer festgelegten Konzentration an der Grenzfläche beschreiben. Sie erlauben die Erstellung topographischer Höhenkarten, die die Rauheit von Grenzflächen visualisieren und ermöglichen die Bestimmung wesentlicher Grenzflächenparameter wie die quadratische Rauheit oder die lateralen und vertikalen Korrelationslängen. Zusätzlich wurden Isoflächen an unterschiedlichen Konzentrationsniveaus verwendet, um topographische Karten der Grenzflächenbreite zu erzeugen. Die Stärke der Methodik liegt in der Möglichkeit, alle chemisch-strukturellen Parameter von vergrabenen Grenzflächen mit einer einzelnen Tomographiemessung zu bestimmen.
Die Applikation dieser neuen Grenzflächentomographie-Technik wird an unterschiedlichen Halbleitermaterialien für optische Anwendungen demonstriert: An einer (Al,Ga)As/GaAs-Mikrokavität, einem (Al,Ga)N/GaN-Bragg-Reflektor und einem 3D (In,Ga)N/GaN-Nanodraht. / The investigation of III-V heterostructure interfaces plays a key role in developing novel semiconductor devices due to the strong influence of interfaces on device characteristics. Transmission electron microscopy (TEM) has proven to be one of the most suitable tools for an interface analysis. The interpretation of two-dimensional projections can be challenging, especially for three-dimensional (3D) structures, since the depth information is lost in the projection. It is discussed in this thesis that interfaces can be seen as 3D objects, particularly when interfaces are subject to large roughnesses or chemical intermixing. A new analytical method for the comprehensive characterization of buried III-V semiconductor interfaces based on electron tomography was developed.
This method is applied to an (Al,Ga)As/GaAs multilayer system as a case study. It is shown that the tomographic reconstruction of a tomography needle of this material can be exploited to obtain so-called iso-concentration surfaces. These surfaces describe the positions of a chosen concentration value at the interfaces. They enable the creation of topographic height maps revealing the roughness of several interfaces. The height maps allow the determination of essential interface parameters as the quadratic mean roughness or the lateral and vertical correlation lengths using the height-height correlation function. In addition, height-difference maps based on isosurfaces corresponding to different concentration levels were used to generate topographic maps of the interface width. The methodology’s main strength is the ability to determine all chemical-structural parameters of buried interfaces with a single measurement.
This thesis presents the application of this new interfacial tomography technique on semiconducting materials used for optical application purposes: An (Al,Ga)As/GaAs microcavity, an (Al,Ga)N/GaN Bragg reflector and a complex, 3D (In,Ga)N/GaN multi-shell nanowire.
|
5 |
Electron tomography and microscopy on semiconductor heterostructuresNiehle, Michael 27 September 2016 (has links)
Elektronentomographie erlaubt die dreidimensionale (3D) Charakterisierung von Kristalldefekten auf der Nanometerskala. Die Anwendung in der Forschung an epitaktischen Halbleiterheterostrukturen ist bisher nicht durchgesetzt worden, obwohl kleiner werdende Bauteile mit zunehmend dreidimensionaler Struktur entsprechende Untersuchungen verlangen, um die Beziehung von Struktur und physikalischen Eigenschaften in entsprechenden Materialsystemen zu verstehen. Die vorliegende Arbeit demonstriert die konsequente Anwendung der Elektronentomographie auf eine III-Sb basierte Laser- und eine 3D (In,Ga)N/GaN Nanosäulenheterostruktur. Die unerlässliche Zielpräparation von Proben mittels FIB-SEM-Zweistrahlmikroskops wird herausgestellt. Die kontrollierte Orientierung der Probe während der Präparation und die sorfältige Auswahl eines Abbildungsverfahrens im STEM werden detailliert beschrieben. Die umfassende räumliche Mikrostrukturanalyse einer antimonidbasierten Schichtstruktur folgt der Dimensionalität von Kristalldefekten. Die Facettierung und Lage einer Pore (3D Defekt), deren Auftreten in der MBE gewachsenen GaSb-Schicht untypisch ist, werden bestimmt. Das Zusammenspiel von anfänglich abgeschiedenen AlSb-Inseln auf dem Si-Substrat, der Ausbildung eines Fehlversetzungsnetzwerkes an der Grenzfläche der Heterostruktur (2D Defekt) und dem Auftreten von Durchstoßversetzungen wird mit Hilfe der Kombination tomographischer und komplementärer TEM-/STEM-Ergebnisse untersucht. Die räumliche Anordnung von Versetzungen (1D Defekte), die das ganze Schichtsystem durchziehen, wird mit Elektronentomographie offenbart. Die Wechselwirkung dieser Versetzungen mit Antiphasengrenzen und anderen Liniendefekten sind ein einzigartiges Ergebnis der Elektronentomographie. Abschließend sind Unterschiede im Indiumgehalt und in der Schichtdicke von (In,Ga)N-Einschlüssen auf verschiedenen Facetten schief aufgewachsener GaN-Nanosäulen einmalig per Elektronentomographie herausgearbeitet worden. / Electron tomography exhibits a very poor spread in the research field of epitaxial semiconductor heterostructures in spite of the ongoing miniaturization and increasing three-dimensional (3D) character of nano-structured devices. This necessitates a tomographic approach at the nanometre scale in order to characterize and understand the relation between structure and physical properties of respective material systems. The present work demonstrates the rigorous application of electron tomography to an III-Sb based laser and to an (In,Ga)N/GaN nanocolumn heterostructure. A specific target preparation using a versatile FIB-SEM dual-beam microscope is emphasized as indispensable. The purposeful orientation of the specimen during preparation and the careful selection of an imaging mode in the scanning-/transmission electron microscope (S/TEM) are regarded in great detail. The comprehensive spatial microstructure characterization of the antimonide based heterostructure follows the dimensionality of crystal defects. The facetting and position of a pore (3D defect) which is unexpected in the MBE grown GaSb layer, is determined. The interplay of the initially grown AlSb islands on Si, the formation of a misfit dislocation network at the heterostructure interface (2D defect) and the presence of threading dislocations is investigated by the correlation of tomographic and complementary S/TEM results. The spatial arrangement of dislocations (1D defects) penetrating the whole stack of antimonide layers is revealed by electron tomography. The interaction of these line defects with anti-phase boundaries and with other dislocations is exclusively observed in the 3D result. The insertion of (In,Ga)N into oblique GaN nanocolumns is uniquely accessed by electron tomography. The amount of incorporated indium and the (In,Ga)N layer thickness is shown to vary on the different facets of the GaN core.
|
6 |
Spezielle Anwendungen der Transmissionselektronenmikroskopie in der SiliziumhalbleiterindustrieMühle, Uwe 17 February 2015 (has links) (PDF)
Die außerordentlichen Steigerungen der Funktionalität und Produktivität in der Halbleiterindustrie sind zum wesentlichen Teil auf eine Verkleinerung der Strukturdetails auf einer logarithmischen Skala über die letzten Jahrzehnte zurückzuführen. Sowohl zur Kontrolle des Fertigungsergebnisses als auch zur Klärung von Fehlerursachen ist die Nutzung transmissionselektronenmikroskopischer Methoden unabdingbar. Für die Zielpräparation von Halbleiterstrukturen sind Techniken unter Nutzung der Focused Ion Beam Geräte etabliert, die je nach der konkreten Aufgabenstellung variiert werden. Die Abbildung von Strukturdetails mit Abmessungen von wenigen Nanometern erfordert die Anwendung unterschiedlicher Kontrastmechanismen. Die Ergänzung der Abbildung durch die analytischen Techniken der energiedispersiven Röntgenmikroanalyse und der Elektronenenergieverlustanalyse ist ein wertvolles Werkzeug bei der Klärung von Fehlerursachen oder bei prozesstechnischen Fragestellungen. Die Nutzung der Rastertransmissionselektronenmikroskopie erlaubt die unmittelbare Kombination von Abbildung und Elementanalyse.
Die lokale Verteilung von Dotierstoffen als wesentliche Grundlage für die Funktion von Bauelementen in der Halbleiterindustrie ist nur über ihre Auswirkung auf die Phase der transmittierten Elektronenwelle nachweisbar. Mittels Elektronenholographie kann dieser Einfluss gemessen werden und das Prozessergebnis von Implantationen dargestellt werden. Für die Charakterisierung von Details, die kleiner als die Probendicken sind, die im TEM genutzt werden, ist die Anwendung der Elektronentomographie ein geeignetes Werkzeug. Dazu sind spezielle Präparations- und Abbildungsstrategien erforderlich. / The strong improvements in functionality and productivity in the semiconductor industry are mostly a result of the decrease of structural details on a logarithmic scale during the last decades. The monitoring of the production process, as well as failure analyses, utilize methods of transmission electron microscopy. For targeted preparations of semiconductor structures, techniques based on focused ion beams are established, with adaptions to the current task. The imaging of structural details with dimensions of a few nanometers requires the application of different contrast techniques, depending on the detailed request. Different opportunities of elemental analysis, such as energy dispersive X-ray analysis or electron energy loss analysis, deliver additional information about the chemical composition and binding states on a nanoscale. The use of scanning transmission electron microscopy enables a direct combination of imaging and elemental analysis.
The local distribution of dopants, as one of the major basics for the function of semiconductor devices, can be observed via the phase shift of the transmitted electron wave only. This influence requires the application of electron holography, a technique which enables the visualization of the process result of implantations or diffusion processes. The characterization of details which are smaller than the thickness of a TEM-sample is enabled through the use of electron tomography. This technique requires special strategies for preparation and imaging and delivers a 3D-dataset, describing the structure.
|
7 |
Quantitative Messung von Dotiergebieten in FIB-präparierten Silizium-Halbleiterbauelementen mittels ElektronenholographieLenk, Andreas 17 November 2008 (has links)
Das Einbringen von Dotierstoffen in das Substratmaterial ist einer der wichtigsten Teilprozesse in der Halbleiterindustrie. Größe, Lage und Konzentration elektrisch aktiver Dotiergebiete bestimmen wesentlich die Eigenschaften der mikroelektronischen Basisbauelemente und damit die Funktionalität der Endprodukte. Die kontinuierliche Verkleinerung dieser Bauelemente zieht steigende Anforderungen an die Präzision bei ihrer Herstellung nach sich. Analyseverfahren, mit denen die genannten Kenngrößen gemessen werden können, sind aus diesem Grund von hoher Bedeutung. Elektronenholographie ist eine dafür prinzipiell geeignete Messmethode, da sie eine zweidimensionale Vermessung der durch die Dotanden veränderten Potentialstruktur des Halbleiters in der geforderten Ortsauflösung von wenigen nm erlaubt. Ein Teil dieser Arbeit befasst sich mit der Optimierung der für die holographische Untersuchung wichtigen Parameter. Zu diesem Zweck werden sowohl präparative Aspekte wie geeignete Probendicke und Struktur der Proben als auch messtechnische Aspekte wie kohärente Beleuchtung und TEM-Parameter diskutiert. Während sich der Hauptteil der Arbeit mit den dabei gewonnenen wissenschaftlichen Erkenntnissen befasst, werden im Anhang die bei Präparation und Messung wichtigen Details ausführlich beschrieben. Ein wesentliches Problem bei der elektronenholographischen Messung stellt die Präparation der Objekte für die Untersuchung im TEM dar. Die einzige sinnvolle Möglichkeit für eine industrielle Anwendung ist die Zielpräparation mit dem fokussierten Ionenstrahl („FIB“), da keine andere Methode vergleichbar effizient arbeitet. Leider wird bei dieser Art von Präparation die Probe von der Oberfläche bis in eine gewisse Tiefe sowohl strukturell als auch elektrisch verändert. Diese Artefakte beeinflussen das Ergebnis der hochsensiblen holographischen Messung. Um die gewonnenen Daten dennoch verlässlich quantitativ auswerten zu können, muss klar zwischen ursprünglichen Objekteigenschaften und präparativ induzierten Schädigungen unterschieden werden. Um dieses Ziel zu erreichen, wurden durch die FIB-Präparation hervorgerufene Schädigungen der Probe systematisch analysiert. Mit Hilfe von SIMS konnte die Tiefenverteilung des beim Ionenschneiden eingedrungenen Fremdmaterials gemessen werden. Es wurden Querschnitte von FIB-Proben durch konventionelle, holographische sowie holographisch-tomographische Abbildung im TEM an einer eigens dafür entwickelten nadelförmigen Probengeometrie untersucht. Dabei wurden die entstandenen strukturellen und elektrischen Veränderungen beobachtet und quantitativ charakterisiert. Der Einsatz von Tomographie erlaubte schließlich die Messung der Potentialverteilung im Inneren der Nadeln ohne eine Verfälschung durch Projektionseffekte. Es wurde gezeigt, dass die über die Schädigungen gewonnenen Erkenntnisse für eine Korrektur der holographischen Daten genutzt werden können. Dazu wurden entsprechende Untersuchungen an verschiedenen Bauelementen aus der Halbleiterindustrie durchgeführt. Die korrigierten Ergebnisse wurden dabei stets mit den theoretischen Erwartungen verglichen.
|
8 |
Spindle organization in three dimensionsMüller-Reichert, Thomas 14 December 2006 (has links) (PDF)
During cell division, chromosome segregation takes place on bipolar, microtubulebased spindles. Here, C. elegans is used to analyze spindle organization under both mitotic and meiotic conditions. First, the role of SAS-4 in organizing centrosome structure was analyzed. Partial depletion of SAS-4 in early embryos results in structurally defective centrioles. The study of this protein sheds light on the poorly understood role of the centrioles in dictating centrosome size. Second, the ultrastructure of wild-type mitotic spindle components was analyzed by electron tomography. This 3-D analysis reveals morphologically distinct microtubule end morphologies in the mitotic spindle pole. These results have structural implications for models of microtubule interactions with centrosomes Third, spindle assembly was studied in female meiosis. Specifically, the role of the microtubule severing complex katanin in spindle organization was analyzed. Electron tomography reveals fragmentation of spindle microtubules and suggests a novel katanin-dependent mechanism of meiotic spindle assembly. In this model, relatively long microtubules seen near the meiotic chromatin are converted into numerous short fragments, thus increasing the total number of polymers in an acentrosomal environment. Taken together, these results provide novel insights into the three-dimensional organization of microtubules during spindle assembly. / Die Segregation der Chromosomen während der Zellteilung wird duch bipolare, von Microtubuli-aufgebauten Spindlen gewährleistet. In der vorliegenden Arbeit wird C. elegans zur Analyse der Spindelorganisation unter mitotischen und meiotischen Bedingungen herangezogen. Erstens wird die Rolle von SAS-4 in der Organisation von Zentrosomen untersucht. Die partielle Depletierung von SAS-4 in frühen Embryonen führt zu strukturell defekten Zentriolen und wirft somit Licht auf die wenig verstandene Rolle der Zentriolen in der Bestimmung der Zentrosomengröße. Zweitens wird die Ultrastruktur der mitotischen Spindelkomponenten im Wildtyp durch Elektronentomographie untersucht. Diese 3-D-Analyse zeigt, dass im mitotischen Spindlepol unterschiedliche Morphologien der Mikrotubulienden zu finden sind. Diese Ergebnisse haben strukturelle Implikationen für Modelle der Mikrotubuli-Zentrosomen-Interaktionen. Drittens wird der Aufbau der Spindel in der weiblichen Meiose, speziell die Rolle des Mikrotubuli-schneidenden Kataninkomplexes in der Spindelorganisation, untersucht. Die Elektronentomographie zeigt hier eine Fragmentierung der Spindelmikrotubuli. Basierend auf diesem Ergebnis wird ein neues Katanin-abhängiges Modell der Formierung der Meiosespindel entwickelt, in dem relativ lange Microtubuli in Nähe des meiotischen Chromatins in zahlreiche kurze Mikrotubuli “zerschnitten” werden. Dies erhöht die Anzahl der verfügbaren Polymere in dieser azentrosomalen Situation. Zusammenfassend bringen diese Ergebnisse neue Einsichten in die räumliche Organisation der Mikrotubuli während des Spindelaufbaus.
|
9 |
Spezielle Anwendungen der Transmissionselektronenmikroskopie in der SiliziumhalbleiterindustrieMühle, Uwe 21 November 2014 (has links)
Die außerordentlichen Steigerungen der Funktionalität und Produktivität in der Halbleiterindustrie sind zum wesentlichen Teil auf eine Verkleinerung der Strukturdetails auf einer logarithmischen Skala über die letzten Jahrzehnte zurückzuführen. Sowohl zur Kontrolle des Fertigungsergebnisses als auch zur Klärung von Fehlerursachen ist die Nutzung transmissionselektronenmikroskopischer Methoden unabdingbar. Für die Zielpräparation von Halbleiterstrukturen sind Techniken unter Nutzung der Focused Ion Beam Geräte etabliert, die je nach der konkreten Aufgabenstellung variiert werden. Die Abbildung von Strukturdetails mit Abmessungen von wenigen Nanometern erfordert die Anwendung unterschiedlicher Kontrastmechanismen. Die Ergänzung der Abbildung durch die analytischen Techniken der energiedispersiven Röntgenmikroanalyse und der Elektronenenergieverlustanalyse ist ein wertvolles Werkzeug bei der Klärung von Fehlerursachen oder bei prozesstechnischen Fragestellungen. Die Nutzung der Rastertransmissionselektronenmikroskopie erlaubt die unmittelbare Kombination von Abbildung und Elementanalyse.
Die lokale Verteilung von Dotierstoffen als wesentliche Grundlage für die Funktion von Bauelementen in der Halbleiterindustrie ist nur über ihre Auswirkung auf die Phase der transmittierten Elektronenwelle nachweisbar. Mittels Elektronenholographie kann dieser Einfluss gemessen werden und das Prozessergebnis von Implantationen dargestellt werden. Für die Charakterisierung von Details, die kleiner als die Probendicken sind, die im TEM genutzt werden, ist die Anwendung der Elektronentomographie ein geeignetes Werkzeug. Dazu sind spezielle Präparations- und Abbildungsstrategien erforderlich.:0. Gliederung
Danksagung 3
Kurzfassung / Abstract 5
Abkürzungsverzeichnis 7
Verzeichnis der Symbole 9
0 Gliederung 13
1 Einleitung 15
1.1 Rahmenbedingungen der Halbleiterindustrie 15
1.2 Typische Strukturen und Fragestellungen in Halbleiterbauelementen 17
1.3 Analytische Untersuchungen an Halbleiterstrukturen 19
2 Einordnung der TEM in die Analytik von Halbleiterbauelementen 23
2.1 Einsatz struktur- und elementanalytischer Verfahren in der Halbleiterindustrie 23
2.2 Beitrag der Transmissionselektronenmikroskopie zu den Fragestellungen 25
2.3 Beispiele typischer Halbleiterstrukturen 27
2.4 Anforderungen an ein TEM für den Einsatz an einem Halbleiterproduktionsstandort
31
3 Präparation von Halbleiterstrukturen Untersuchung im TEM 35
3.1 Mechanische Vorbereitung 35
3.2 Endabdünnung größerer Bereiche 36
3.3 Zielpräparationen mittels Focused Ion Beam Technik 37
3.4 Lift-Out Techniken 40
4 Abbildende Untersuchungen und strukturanalytische Charakterisierung 45
4.1 Abbildungstechniken für mittlere Ortsauflösungen 46
4.2 Hochauflösende Abbildung kristalliner Bestandteile 56
4.3 Rastertransmissionselektronenmikroskopie 59
4.4 Elektronenbeugung 61
5 Elementanalytische Untersuchungen 65
5.1 Energiedispersive Röntgenanalyse im TEM 65
5.2 Nutzung von Energieverlusten der Elektronen zur Materialcharakterisierung 71
5.2.1 Ansatz und technische Lösungen 71
5.2.2 Elektronenenergiverlustspektroskopie 73
5.2.3 Energiegefilterte Abbildung 76
5.3 Spezielle Anwendungen von EELS und Energiefilterung 80
5.3.1 Energiegefilterte Abbildung unter Nutzung der Plasmonenmaxima 80
5.3.2 Nachweis der Bildung von Verbindungen 84
5.3.3 Abbildung mit reduziertem Energiefenster auf der elementspezifischen Kante 86
5.4 Energiegefilterte Abbildung im STEM-HAADF Modus 87
5.5 Kombination von Abbildung und Elementanalytik („Spectrum Imaging“) 93
14
6 Elektronenholographie 101
6.1 Prinzipielle Fragestellung 101
6.2 Physikalisches Prinzip der Elektronenholographie 109
6.3 Technische Umsetzung bei der Off-axis Holographie 112
6.4 Besonderheiten der Probenpräparation für elektronenholographische
Untersuchungen
116
6.5 Hologrammaufnahme und numerische Auswertung 120
6.6 Anwendungen der Elektronenholographie an Halbleiterstrukturen 124
6.7 Elektronenholographische Untersuchungen ohne Einsatz einer Lorentzlinse 130
6.8 Möglichkeiten der Inline Holographie 134
7 Elektronentomographie 137
7.1 Prinzipielle Fragestellung 137
7.2 Theoretischer Ansatz zur Lösung 138
7.3 Praktische Umsetzung 143
7.4 Beispielhafte Ergebnisse 148
7.4.1 Charakterisierung von Diffusionsbarrieren 148
7.4.2 Geometrie des Substrates nach komplexer Prozessierung 150
7.4.3 Beschreibung und Messmöglichkeiten an 3-dimensional aufgebauten
Transistoren
151
7.4.4 Fehleranalyse an Transistoren größerer Dimension 154
8 Zusammenfassung und Ausblick 157
8.1 Präparative Aspekte 157
8.2 Neue Herausforderungen an die Abbildungstechnik 158
8.3 Elementanalytische Arbeitstechniken 160
8.4 Elektronenholographie 161
8.5 Elektronentomographie 162
8.6 Weitere Fragestellungen 163
9 Literaturverzeichnis 165 / The strong improvements in functionality and productivity in the semiconductor industry are mostly a result of the decrease of structural details on a logarithmic scale during the last decades. The monitoring of the production process, as well as failure analyses, utilize methods of transmission electron microscopy. For targeted preparations of semiconductor structures, techniques based on focused ion beams are established, with adaptions to the current task. The imaging of structural details with dimensions of a few nanometers requires the application of different contrast techniques, depending on the detailed request. Different opportunities of elemental analysis, such as energy dispersive X-ray analysis or electron energy loss analysis, deliver additional information about the chemical composition and binding states on a nanoscale. The use of scanning transmission electron microscopy enables a direct combination of imaging and elemental analysis.
The local distribution of dopants, as one of the major basics for the function of semiconductor devices, can be observed via the phase shift of the transmitted electron wave only. This influence requires the application of electron holography, a technique which enables the visualization of the process result of implantations or diffusion processes. The characterization of details which are smaller than the thickness of a TEM-sample is enabled through the use of electron tomography. This technique requires special strategies for preparation and imaging and delivers a 3D-dataset, describing the structure.:0. Gliederung
Danksagung 3
Kurzfassung / Abstract 5
Abkürzungsverzeichnis 7
Verzeichnis der Symbole 9
0 Gliederung 13
1 Einleitung 15
1.1 Rahmenbedingungen der Halbleiterindustrie 15
1.2 Typische Strukturen und Fragestellungen in Halbleiterbauelementen 17
1.3 Analytische Untersuchungen an Halbleiterstrukturen 19
2 Einordnung der TEM in die Analytik von Halbleiterbauelementen 23
2.1 Einsatz struktur- und elementanalytischer Verfahren in der Halbleiterindustrie 23
2.2 Beitrag der Transmissionselektronenmikroskopie zu den Fragestellungen 25
2.3 Beispiele typischer Halbleiterstrukturen 27
2.4 Anforderungen an ein TEM für den Einsatz an einem Halbleiterproduktionsstandort
31
3 Präparation von Halbleiterstrukturen Untersuchung im TEM 35
3.1 Mechanische Vorbereitung 35
3.2 Endabdünnung größerer Bereiche 36
3.3 Zielpräparationen mittels Focused Ion Beam Technik 37
3.4 Lift-Out Techniken 40
4 Abbildende Untersuchungen und strukturanalytische Charakterisierung 45
4.1 Abbildungstechniken für mittlere Ortsauflösungen 46
4.2 Hochauflösende Abbildung kristalliner Bestandteile 56
4.3 Rastertransmissionselektronenmikroskopie 59
4.4 Elektronenbeugung 61
5 Elementanalytische Untersuchungen 65
5.1 Energiedispersive Röntgenanalyse im TEM 65
5.2 Nutzung von Energieverlusten der Elektronen zur Materialcharakterisierung 71
5.2.1 Ansatz und technische Lösungen 71
5.2.2 Elektronenenergiverlustspektroskopie 73
5.2.3 Energiegefilterte Abbildung 76
5.3 Spezielle Anwendungen von EELS und Energiefilterung 80
5.3.1 Energiegefilterte Abbildung unter Nutzung der Plasmonenmaxima 80
5.3.2 Nachweis der Bildung von Verbindungen 84
5.3.3 Abbildung mit reduziertem Energiefenster auf der elementspezifischen Kante 86
5.4 Energiegefilterte Abbildung im STEM-HAADF Modus 87
5.5 Kombination von Abbildung und Elementanalytik („Spectrum Imaging“) 93
14
6 Elektronenholographie 101
6.1 Prinzipielle Fragestellung 101
6.2 Physikalisches Prinzip der Elektronenholographie 109
6.3 Technische Umsetzung bei der Off-axis Holographie 112
6.4 Besonderheiten der Probenpräparation für elektronenholographische
Untersuchungen
116
6.5 Hologrammaufnahme und numerische Auswertung 120
6.6 Anwendungen der Elektronenholographie an Halbleiterstrukturen 124
6.7 Elektronenholographische Untersuchungen ohne Einsatz einer Lorentzlinse 130
6.8 Möglichkeiten der Inline Holographie 134
7 Elektronentomographie 137
7.1 Prinzipielle Fragestellung 137
7.2 Theoretischer Ansatz zur Lösung 138
7.3 Praktische Umsetzung 143
7.4 Beispielhafte Ergebnisse 148
7.4.1 Charakterisierung von Diffusionsbarrieren 148
7.4.2 Geometrie des Substrates nach komplexer Prozessierung 150
7.4.3 Beschreibung und Messmöglichkeiten an 3-dimensional aufgebauten
Transistoren
151
7.4.4 Fehleranalyse an Transistoren größerer Dimension 154
8 Zusammenfassung und Ausblick 157
8.1 Präparative Aspekte 157
8.2 Neue Herausforderungen an die Abbildungstechnik 158
8.3 Elementanalytische Arbeitstechniken 160
8.4 Elektronenholographie 161
8.5 Elektronentomographie 162
8.6 Weitere Fragestellungen 163
9 Literaturverzeichnis 165
|
10 |
Spindle organization in three dimensionsMüller-Reichert, Thomas 12 December 2006 (has links)
During cell division, chromosome segregation takes place on bipolar, microtubulebased spindles. Here, C. elegans is used to analyze spindle organization under both mitotic and meiotic conditions. First, the role of SAS-4 in organizing centrosome structure was analyzed. Partial depletion of SAS-4 in early embryos results in structurally defective centrioles. The study of this protein sheds light on the poorly understood role of the centrioles in dictating centrosome size. Second, the ultrastructure of wild-type mitotic spindle components was analyzed by electron tomography. This 3-D analysis reveals morphologically distinct microtubule end morphologies in the mitotic spindle pole. These results have structural implications for models of microtubule interactions with centrosomes Third, spindle assembly was studied in female meiosis. Specifically, the role of the microtubule severing complex katanin in spindle organization was analyzed. Electron tomography reveals fragmentation of spindle microtubules and suggests a novel katanin-dependent mechanism of meiotic spindle assembly. In this model, relatively long microtubules seen near the meiotic chromatin are converted into numerous short fragments, thus increasing the total number of polymers in an acentrosomal environment. Taken together, these results provide novel insights into the three-dimensional organization of microtubules during spindle assembly. / Die Segregation der Chromosomen während der Zellteilung wird duch bipolare, von Microtubuli-aufgebauten Spindlen gewährleistet. In der vorliegenden Arbeit wird C. elegans zur Analyse der Spindelorganisation unter mitotischen und meiotischen Bedingungen herangezogen. Erstens wird die Rolle von SAS-4 in der Organisation von Zentrosomen untersucht. Die partielle Depletierung von SAS-4 in frühen Embryonen führt zu strukturell defekten Zentriolen und wirft somit Licht auf die wenig verstandene Rolle der Zentriolen in der Bestimmung der Zentrosomengröße. Zweitens wird die Ultrastruktur der mitotischen Spindelkomponenten im Wildtyp durch Elektronentomographie untersucht. Diese 3-D-Analyse zeigt, dass im mitotischen Spindlepol unterschiedliche Morphologien der Mikrotubulienden zu finden sind. Diese Ergebnisse haben strukturelle Implikationen für Modelle der Mikrotubuli-Zentrosomen-Interaktionen. Drittens wird der Aufbau der Spindel in der weiblichen Meiose, speziell die Rolle des Mikrotubuli-schneidenden Kataninkomplexes in der Spindelorganisation, untersucht. Die Elektronentomographie zeigt hier eine Fragmentierung der Spindelmikrotubuli. Basierend auf diesem Ergebnis wird ein neues Katanin-abhängiges Modell der Formierung der Meiosespindel entwickelt, in dem relativ lange Microtubuli in Nähe des meiotischen Chromatins in zahlreiche kurze Mikrotubuli “zerschnitten” werden. Dies erhöht die Anzahl der verfügbaren Polymere in dieser azentrosomalen Situation. Zusammenfassend bringen diese Ergebnisse neue Einsichten in die räumliche Organisation der Mikrotubuli während des Spindelaufbaus.
|
Page generated in 0.0545 seconds