71 |
Transportes e confinamento em monocamada e bicamada de nanoestruturas de grafeno com diferentes bordas, interfaces e potenciais / Transport and confinement in monolayer and bilayer graphene nanostructures with different edges, interfaces and potentialsDiego Rabelo da Costa 26 November 2014 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Grafeno, uma rede bidimensional de Ãtomos de carbono, tem sido amplamente estudado durante os Ãltimos anos. O interesse por este material nÃo à apenas devido Ãs suas possÃveis aplicaÃÃes tecnolÃgicas futuras, mas tambÃm porque oferece a possibilidade de investigar fenÃmenos interessantes previstos pelas teorias quÃnticas de campo, que vÃo desde o tunelamento de Klein e outros efeitos quasi-relativÃsticos à existÃncia de novos tipos de graus de liberdade do elÃtron, ou seja, o pseudo-spin, e a existÃncia de dois vales eletrÃnicos nÃo-equivalentes na vizinhanÃa dos pontos sem gap do seu espectro de energia. VÃrias das propriedades exÃticas observadas no grafeno originam-se do facto de que dentro da aproximaÃÃo de baixas energias para o Hamiltoniano tight-binding do grafeno, elÃtrons se comportam como fÃrmions de Dirac sem massa, com uma dispersÃo de energia linear. Assim como no caso de uma monocamada de grafeno, o espectro eletrÃnico de baixas energias para uma bicamada de grafeno à sem gap, mas, neste caso, à dominado pela dispersÃo parabÃlica. No entanto, uma caracterÃstica interessante à compartilhada por ambas monocamada e bicamada de grafeno: o grau de liberdade de vale.
Nesta tese, nÃs investigamos teoricamente: (i) as propriedades dinÃmicas em mono e bicamadas de grafeno, realizando um estudo sistemÃtico do espalhamento de pacotes de onda em diferentes formas de interfaces, bordas e potenciais; e, alÃm disso, (ii) os nÃveis de energia de sistemas confinados no grafeno na presenÃa ou ausÃncia de campos magnÃticos e elÃtricos externos. Na primeira parte do trabalho, nÃs utilizamos a abordagem tight-binding para estudar o espalhamento de um pacote de onda Gaussiano nas bordas de uma monocamada de grafeno (armchair e zigzag) na presenÃa de campos magnÃticos reais e pseudo-magnÃticos (induzidos por tensÃo) e tambÃm calculamos as probabilidades de transmissÃo de um pacote de onda Gaussiano atravÃs de um contato de ponto quÃntico definido por potenciais eletrostÃticos em bicamadas de grafeno. Estes cÃlculos numÃricos sÃo baseados na soluÃÃo da equaÃÃo de SchrÃdinger dependente do tempo para o Hamiltoniano do modelo tight-binding, usando a tÃcnica Split-operator. Nossa teoria permite investigar espalhamento no espaÃo recÃproco, e dependendo do tipo de borda do grafeno, nÃs observamos espalhamento dentro do mesmo vale, ou entre diferentes vales. Na presenÃa de um campo magnÃtico externo, as bem conhecidas Ãrbitas skipping orbits sÃo observadas. No entanto, nossos resultados demonstram que, no caso de um campo pseudo-magnÃtico induzido por uma tensÃo nÃo-uniforme, o espalhamento por uma borba armchair resulta em um estado de borda nÃo-propagante. NÃs tambÃm propomos um sistema de filtragem de vales muito eficiente atravÃs de um sistema de contato de ponto quÃntico definido por portas eletrostÃticas em uma bicamada de grafeno. Para o sistema de bicamadas sugerido, nÃs investigamos a forma de melhorar a eficiÃncia do sistema como um filtro de vales por diferentes parÃmetros, como comprimento, largura e amplitude do potencial aplicado.
Na segunda parte da tese, nÃs apresentamos um estudo sistemÃtico dos espectros de energia de anÃis quÃnticos de grafeno com diferentes geometrias e tipos de borda, na presenÃa de um campo magnÃtico perpendicular. NÃs discutimos quais caracterÃsticas obtidas por meio de um modelo simplificado de Dirac podem ser recuperadas quando os auto-estados de anÃis quÃnticos de grafeno sÃo comparados com os resultados do modelo tight-binding. AlÃm disso, nÃs tambÃm investigamos os estados confinados em dois sistemas hÃbridos diferentes de monocamada - bicamada, identificando estados localizados dentro do ponto e estados de borda para as estruturas de confinamento em bicamadas sugeridas, assim como vamos estudar o comportamento dos nÃveis de energia em funÃÃo do tamanho do ponto e sob um campo magnÃtico externo aplicado. Finalmente, usando o modelo contÃnuo de Dirac de quatro bandas, nÃs tambÃm derivamos uma expressÃo geral para a condiÃÃo de contorno de massa infinita em bicamada de grafeno, a fim de aplicar essa condiÃÃo de contorno para calcular analiticamente os estados confinados e as correspondentes funÃÃes de onda em um ponto quÃntico em uma bicamada de grafeno na ausÃncia e na presenÃa de um campo magnÃtico perpendicular. Nossos resultados analÃticos apresentam boa concordÃncia quando comparados com os resultados tight-binding. / Graphene, a two-dimensional lattice of carbon atoms, has been widely studied during the past few years. The interest in this material is not only due to its possible future technological applications, but also because it provides the possibility to probe interesting phenomena predicted by quantum field theories, ranging from Klein tunneling and other quasi-relativistic effects to the existence of new types of electron degrees of freedom, namely, the pseudo-spin, and the existence of two inequivalent electronic valleys in the vicinity of the gapless points of its energy spectrum. Several of the exotic properties observed in graphene originate from the fact that within the low energy approximation for the tight-binding Hamiltonian of graphene, electrons behave as massless Dirac fermions, with a linear energy dispersion. Just like in single layer graphene, the low-energy eletronic spectrum in bilayer graphene is gapless, but in this case it is dominated by the parabolic dispersion. Nevertheless, one interesting feature is shared by both monolayer and bilayer graphene: the valley degree of freedom.
In this thesis, we theoretically investigate: (i) the dynamic properties in mono and bilayer graphene, performing a systematic study of wave packet scattering in different interface shapes, edges and potentials; and furthermore (ii) the energy levels of confined systems in graphene in the presence or absence of external magnetic and electric fields. In the first part of the work, we use the tight-binding approach to study the scattering of a Gaussian wave packet on monolayer graphene edges (armchair and zigzag) in the presence of real and pseudo (strain induced) magnetic fields and also calculate the transmission probabilities of a Gaussian wave packet through a quantum point contact defined by electrostatic gates in bilayer graphene. These numerical calculations are based on the solution of the time-dependent SchrÃdinger equation for the tight-binding model Hamiltonian, using the Split-operator technique. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well known skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state. We propose also a very efficient valley filtering through a quantum point contact system defined by electrostatic gates in bilayer graphene. For the suggested bilayer system, we investigate how to improve the efficiency of the system as a valley filter by varying parameters, such as length, width and amplitude of the applied potential.
In the second part of the thesis, we present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types, in the presence of a perpendicular magnetic field. We discuss which features obtained through a simplified Dirac model can be recovered when the eigenstates of graphene quantum rings are compared with the tight-binding results. Furthermore, we also investigate the confined states in two different hybrid monolayer - bilayer systems, identifying dot-localized states and edge states for the suggested bilayer confinement structures, as well as we will study the behavior of the energy levels as a function of dot size and under an applied external magnetic field. Finally, using the four-band continuum Dirac model, we also derive a general expression for the infinite-mass boundary condition in bilayer graphene in order to apply this boundary condition to calculate analytically the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our analytic results exhibit good agreement when compared with the tight-binding ones.
|
72 |
Estudo de Primeiros Princípios de Nanotubos de Carbono de Camada Dupla / Study of the First Principles of Nanotubes Carbon of Double LayerLima, Welber de Jesus Mendes 18 March 2008 (has links)
Made available in DSpace on 2016-08-18T18:19:24Z (GMT). No. of bitstreams: 1
Welber de Jesus Mendes Lima.pdf: 8607012 bytes, checksum: e1e51a1203951dd30beafb4d273369b3 (MD5)
Previous issue date: 2008-03-18 / FUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO / In this work, are studies the electronic and structural properties of the (8,0)@(13,0)
e (6,0)@(13,0) double wall carbon nanotube of zig-zag type doped with atoms of the nitrogen
and boron on the inner tube and outer tube. To studies these properties we used
of the ab initio method employed of the density functional theory in the generalized gradient
approximations. All simulations are make with the SIESTA code. Through of the
results we observed that electronic properties, analysis via band structure, are changes
with introduction of the impurity this systems. The results shown that nitrogen atom
to act how a type-n doped and boron atoms act how a type-p doped. Through of the
formation energy calculation we observed that (8,0)@(13,0) and (6,0)@(13,0) DWCNTs
are energetic more favorable when is doped with nitrogen in inner tube and boron in outer tube. / Neste trabalho foram estudadas as propriedades eletr onicas e estruturais dos nanotubos
de carbono de camada dupla (8,0)@(13,0) e (6,0)@(13,0) do tipo zig-zag dopados
com os átomos de Nitrogênio e Boro tanto no tubo interno como no tubo externo. Para
estudar tais propriedades, utilizamos o método ab initio com uso da teoria do funcional
de densidade na aproximação do gradiente generalizado. Todas as simulações foram realizadas
com a utilização do código siesta. Através dos resultados encontrados observamos
que as propriedades eletrônicas, analisadas via estrutura de bandas, são afetadas com a
introdução de impurezas neste sistema. Os resultados mostram que o átomo de Nitrogênio
atua como um dopante tipo-n e o átomo de Boro atua como um dopante tipo-p. Através
do cálculo de energia de formação observamos que os nanotubos de carbono de camada
dupla (DWCNTs) (8,0)@(13,0) e (6,0)@(13,0) são energeticamente mais estáveis quando
estes são dopados com Nitrogênio no tubo interno e com Boro no externo.
|
73 |
Estudo de Primeiros Princípios de Bundles de Nanotubos de Nitreto de Boro sob Pressão Hidrostática / Study of First Principles of Bundles of Nanotubes of Boron Nitride, under Pressure HydrostaticCoutinho, Samir Silva 21 August 2007 (has links)
Made available in DSpace on 2016-08-18T18:19:29Z (GMT). No. of bitstreams: 1
Samir Silva.pdf: 2648726 bytes, checksum: c089ee5506a5e19afed5dafba9cbc09f (MD5)
Previous issue date: 2007-08-21 / In this work were studied the electronic, vibrations and structural properties of
boron nitride nanotube bundles (16,0), (12,0) and (8,0), when submitted to the hydrostatic
pressure changes. To study such properties, we used the ab initio method employing
density functional theory in the approach of the generalized gradient approximation. All
the simulations were performed using of the siesta code. The obtained results showed
that the circular cross section of each one of the studied bundles undergoes a deformation
(elliptic) when applied pressure reaches the value of P > 1,0 GPa for the bundle (16,0), P
> 2,0 GPa for the bundle (12,0) and for values greater then 6,5 GPa for the bundle (8,0).
For each pressure interval it was calculated the percent relative volume, cohesive energy,
modes of vibrations and the band structures. The analysis of the electronic properties,
through the band structures, indicates that the characteristics semiconducting of boron
nitride nanotubes is preserved during the pressure increasing. / Neste trabalho foram estudadas as propriedades eletrõnicas, vibracionais e estruturais
de bundles de nanotubos de nitreto de boro (16,0), (12,0) e (8,0) submetidos à
variação de pressão hidrostástica. Para estudar tais propriedades, utilizamos o método ab
initio com uso da teoria do funcional da densidade na aproximação do gradiente generalizado.
Todas simulações foram realizadas com a utilização do código siesta. Com os
resultados encontrados foi observado que a seção transversal circular de cada um dos bundles
estudados sofre uma deformação (elíptica) quando a pressão aplicada atinge o valor
de P > 1,0 GPa para o bundles (16,0), P > 2,0 GPa para o bundles (12,0) e P > 6,5 GPa
para os bundles (8,0). Para cada intervalo de pressão aplicada calculamos o percentual do
volume relativo, energia coesiva, modos vibracionais e a estrutura de bandas. A análise
das propriedades eletrônicas, através da estrutura de bandas, indica que as características
semicondutoras dos nanotubos de nitreto de boro são preservadas durante o aumento da
pressão.
|
74 |
TiO2 nanotube based dye- sensitised solar cellsCummings, Franscious Riccardo January 2012 (has links)
Philosophiae Doctor - PhD / This work investigated the synthesis of Al2O3-coated TiO2 nanotubes via the anodisation technique for application in DSCs. TiO2 nanotube arrays with
an average length of 15 μm, diameter of 50 nm and wall thickness of 15 nm
were synthesised via anodisation using an organic neutral electrolyte consisting
of 2 M H2O + 0.15 M NH4F + ethylene glycol (EG) at an applied voltage of 60 V
for 6 hours. In addition, scanning electron microscope (SEM) micrographs
showed that anodisation at these conditions yields nanotubes with smooth
walls and hexagonally shaped, closed bottoms. X-ray diffraction (XRD) patterns revealed that the as-anodised nanotubes were amorphous and as such were annealed at 450 °C for 2 hours in air at atmospheric pressure, which yielded crystalline anatase TiO2 nanotubes. Highresolution transmission electron microscope (TEM) images revealed that the nanotube walls comprised of individual nano-sized TiO2 crystallites.
Photoluminescence (PL) spectroscopy showed that the optical properties, especially the bandgap of the TiO2 nanotubes are dependent on the crystallinity, which in turn was dependent on the structural characteristics, such as the wall thickness, diameter and length. The PL measurements were supplemented by Raman spectra, which revealed an increased in the quantum confinement of the optical phonon modes of the nanotubes synthesised at low anodisation voltages, consequently yielding a larger bandgap
The annealed nanotubes were then coated with a thin layer of alumina (Al2O3) using a simple sol-gel dip coating method, effectively used to coat films of nanoparticles. Atomic force microscopy (AFM) showed that the average nanotube diameter increased post sol-gel deposition, which suggests that the nanotubes are coated with a layer of Al2O3. This was confirmed with HR-TEM, in conjunction with selected area electron diffraction (SAED) and XRD analyses, which showed the coating of the nanotube walls with a thin layer of amorphous Al2O3 with a thickness between 4 and 7 nm. Ultraviolet-visible (UVvis) absorbance spectra showed that the dye-adsorption ability of the nanotubes are enhanced by the Al2O3 coating and hence is a viable material for
solar cell application. Upon application in the DSC, it was found by means of photo-current density – voltage (I – V) measurements that a DSC fabricated with a 15 μm
thick layer of bare TiO2 nanotubes has a photon-to-light conversion efficiency of
4.56%, which increased to 4.88% after coating the nanotubes with a layer of
alumina. However, these devices had poorer conversion efficiencies than bare
and Al2O3-coated TiO2 nanoparticle based DSCs, which boasted with efficiencies of 6.54 and 7.26%, respectively. The low efficiencies of the TiO2 nanotube based DSCs are ascribed to the low surface area of the layer of nanotubes, which yielded low photocurrent densities. Electrochemical impedance spectroscopy (EIS) showed that the electron lifetime in the alumina coated nanotubes are almost 20 times greater than in a bare layer of nanoparticles. In addition, it was also found that the charge transfer resistance at the interface of the TiO2/dye/electrolyte is the lowest for an Al2O3-coated TiO2 layer.
|
75 |
Étude physico-chimique d'intermétalliques d'uranium pour des cibles médicales innovantes de production de ⁹⁹Mo / Study of the physical and chemical properties of uranium intermetallics for novel medical irradiation targets for ⁹⁹Mo productionMoussa, Chantal 16 December 2015 (has links)
Cette thèse s’inscrit dans le cadre du développement de cibles d’irradiation faiblement enrichi en ²³⁵U pour la production du ⁹⁹Mo, radionucléide père du ⁹⁹mTc employé en imagerie médicale. La cible d’irradiation est une plaque fine en aluminium, dont l’âme fissile est constituée d’une dispersion de particules uranifères dans une matrice d’aluminium. Nos travaux plus spécifiquement ont mené à proposer une âme fissile alternative à celle actuellement employée. Pour évaluer les effets de l’affinité chimique, une approche thermodynamique par détermination des relations de phases a été considérée pour cinq systèmes ternaires de références. Les travaux expérimentaux ont conduit à la détermination de sections isothermes pour les systèmes U-Al-X avec X= Ti, Zr, Nb, Ga et Ge, pour deux températures, une basse et une haute températures représentatives des interactions avec l’uranium dans sa forme allotropique orthorhombique (αU) et cubique (gU) respectivement. Les systèmes ternaires U‑Nb-Al et U-Al-Ga, ont fait l’objet d’une optimisation thermodynamique par méthode CALPHAD. Des caractérisations supplémentaires ont été menées sur les phases intermédiaires afin de déterminer leurs propriétés physico-chimiques. Ces examens ont concerné leurs propriétés thermodynamiques (réaction de formation et température et pour certaines enthalpie de formation), structurales et également l’investigation de leurs propriétés électroniques. Cette thèse s’est également intéressée à l’étude des germaniures d’uranium ternaires, U₃TGe₅, en particulier à la recherche de nouvelles phases isotypes et à la caractérisation de leurs propriétés électroniques. Neuf nouveaux composés ont été identifiés pour les métaux T = V, Cr, Zr, Mn, Nb, Mo, Hf, Ta et W avec un arrangement structural similaire à l’antitype Hf₅CuSn₃ et des comportements variés et complexes, tels des fluctuations de spin, de l’ordre antiferromagnétique et ferromagnétique, illustrant le rôle prépondérant du métal de transition dans ces effets électroniques. / This thesis is in the framework of the development of low ²³⁵U enriched irradiation targets for the ⁹⁹Mo production, the mother isotope of ⁹⁹mTc, which is the main radioactive tracers used in nuclear medical imaging. The aim of this work is to identify a new material with a higher uranium density. To fulfil this objective, the determination of the phase relations has been considered for five ternary systems. The experimental work was the determination of the isothermal sections of the U-Al-X with X = Ti, Zr, Nb, Ga and Ge for two temperatures, for representative interactions with U in its orthorhombic form (αU) and cubic form (gU) respectively. The U-Nb-Al and U-Al-Ga ternary system were thermodynamically assessed by CALPHAD assessment. Subsequent characterizations have been carried out on the intermediate phases to determine their physical properties. These studies comprise their thermodynamic features (reaction of formation, including the reaction temperature and for some their enthalpy of formation), structural properties (by means of X-ray and electron diffractions) and their electronic properties, magnetic, and transport (electrical and thermal). This Ph-D thesis was extended to the study of ternary uranium germanides with the general formula U₃TGe₅ by seeking for new isostructural compounds and to investigate their electronic properties. Nine new compounds have been identified with the transition metal, T = V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W with an anti-Hf₅CuSn₃ structural type and various and complex behaviors, such as spin fluctuators, antiferromagnetic and ferromagnetic orders, emphasizing the predominant influence of the transition metal in these electronic phenomena.
|
76 |
Theoretical Studies Of Electronic Properties And Electronic Processes In Conjugated MoleculesMukhopadhyay, Sukrit 05 1900 (has links) (PDF)
This thesis deals with theoretical studies of electronic properties of organic conjugated molecules. The first chapter introduces different classes of organic conjugated molecules which possess high hole mobility, large quadratic non-linear response and low band gap. In this chapter, we further describe different photo-physical processes and the basic principles of various opto-electronic devices. The second chapter provides an introduction to various many-body techniques, which are employed in studying ground and excited state properties of organic conjugated systems. First, we describe the Hartree-Fock theory and the Density Functional (DFT) method. These are followed by full Configuration-Interaction (CI) methods and various semi-empirical methods (CNDO, INDO and NDDO). The INDO method is used in subsequent chapters to obtain the ground and excited state properties of organic conjugated molecules. In addition, we describe the restricted CI (SCI and SDCI) and the Density Matrix Renormalization Group (DMRG) methods. The third chapter of this thesis deals with a time evolution study to ascertain the role of the triplet state in the green emission of the ethyl-hexyl substituted poly-fluorene (PF2/6) films. To understand this phenomenon, we have modeled various non-radiative processes like (i) Inter-System Crossing (ISC), (ii) electron-hole Recombination (e-hR) and (iii) Triplet Quenching (TQ). These studies conclusively prove the contribution of triplet states to the 500 nm EL peak. In chapter four, we describe the origin of the unusual EL in tri-p-tolylamine (TTA) based hole conductors. In order to model this phenomenon, we have performed SCI calculations on TTA, its radical ions and allied hole conductors (TAPC and TPD). These calculations indicate that the unusual EL is due to low-lying charge-transfer (CT) state, which is stabilized by charge-dipole and charge-induced-dipole interactions. In chapter five, we turn our attention to the calculation of ground and excited state properties of a class of donor-acceptor (DA) system using ab-initio DFT and INDO methods. In these systems, DFT calculations along with INDO-SCI calculation, show strong intramolecular charge transfer interaction between the D and the A units. We have further calculated various properties like permanent dipole moments, oscillator strengths, Stoke’s shifts in various solvents etc. In chapter six, we focus on studying linear and non-linear optical properties of first generation nitrogen based dendrimers, using DMRG method. A novel scheme which includes the weights of the dipole allowed states in the computation of the density matrix is developed to obtain accurate dipole allowed excited states as well as the linear and nonlinear optical responses. Chapter seven deals with non-linear optical properties of weak donor-acceptor (DA) complexes formed between methyl substituted phenylenes (donor) and Chloranil or DDQ (acceptors). We have calculated the ground and the low-lying excited states of these DA complexes using INDO-SDCI method. The first hyperpolarizability (β) response coefficients are calculated using the Correction Vector (CV) technique, which are further used to obtain macroscopic depolarization ratios. By comparing the theoretical results with experimental findings, it can be shown that the slipped parallel configuration with a slight twist is the most preferred geometry of these weak DA complexes in solution.
|
77 |
Graphene Nanostructures : A Theoretical Study Of Electronic, Magnetic And Structural PropertiesBhowmick, Somnath 05 1900 (has links) (PDF)
Graphene is a single layer of carbon atoms arranged in honeycomb lattice. Over a long period of time it was treated as a hypothetical material to understand the properties of other allotropes of carbon, such as graphite, carbon nanotube etc. Half decade back, a single layer of graphene was finally isolated and since then the field has observed a flurry of activities. Low energy excitations in graphene are massless Dirac Fermions and quantum electrodynamic effects can be observed at room temperature in graphene, which makes it very popular among the condensed matter community. In addition graphene also shows many interesting mesoscopic effects, which is the focus of the present work. We study the electronic, magnetic and structural properties of the graphene nanostructures. The entire thesis based on the results and findings obtained from the present investigation is organized as follows.
Chapter 1: provides a general introduction to the properties of graphene and graphene based nanostructures.
Chapter2:describes the theoretical tools used in this thesis to investigate the properties of graphene nanoribbons. The first two chapters are meant to give the reader an overview about the field of graphene and a few of the computational techniques commonly used to investigate the properties of graphene. The following chapters are the new findings reported in this thesis.
Chapter3:shows how zigzag graphene nanoribbons respond in a non-linear fashion when edges are subjected to some external potential such as magnetic field. Such response originates from the edge states present in zigzag ribbons and thus not observed in armchair nanoribbons. In the limit of ribbon width W→∞, an edge magnetic field produces a moment of ~ 1/3 per edge atom even for an infinitesimally small field, which is clearly a signature of non-linear response. Response of a finite width nanoribbon is size dependent and also depends on ln(V), the applied field. This is akin to Weber-Fechner law of audio visual perceptions. It is interesting to note that nature does provide a “quantum realization” of this in the form of biological sensing organs like the ear and eye. The magnetic response is found to scale inversely with the ribbon width.
Chapter4:deals with the magnetic properties of the zigzag graphene nanoribbon. This is also a special property of the geometry of the zigzag edges and not observed in armchair nanoribbons. Our investigation reveals that the electron-electron repulsion (Hubbard U) energy creates a delta function like edge magnetic field in zigzag graphene nanoribbons. Starting from this, magnetic properties of zigzag graphene nanoribbons can be qualitatively and quantitatively explained from the non-linear response of zigzag nanoribbons. Zigzag graphene nanoribbons can exist in two possible ‘magnetic states’: antiferro (AF) where the two opposite edges have antiparallel magnetic moment and ferro (FM) where moment is parallel in the two opposite edges. First we describe the properties of undoped zigzag nanoribbons. They have AF ground state. Continuum theory can explain the size dependent bandgap and magnetic moment of the ground state. We present the first explicit derivation of the gap. Then we show that hole doping can change the ground state to FM, which is metallic. Thus the system has the property of magnetoresistance, which can be exploited by doping zigzag graphene nanoribbons externally with some gate voltage or internally by some electron acceptor element, such as boron. The critical doping for transition depends inversely with the ribbon width. We have found that the ‘phase transition’ on hole doping is a common phenomena for zigzag terminated nanostructures, such as hexagonal nanodots.
Chapter5:discusses the effects of random edge shapes and random potential (Anderson disorder) on the magnetic properties of zigzag graphene nanostructures. Defects and disorders in the form of edge shape randomness and random potentials arising from substrate are very common in graphene. Our study reveals that edge state magnetism is very robust to shape randomness of the terminating edges of nanostructures; as long as there are three to four repeat units of a zigzag edge, the edge state magnetism is preserved. We also discover some “high energy” edges (ones where the edge atoms have only one nearest neighbor) can have very large moments compared to even the zigzag edges. Edge magnetism is also found to be robust to relatively small Anderson disorders, because a slowly varying small potential does not scatter the edge states.
Chapter6:reveals how edge functionalization by O atom and OHgroup changes the properties of the zigzag graphene nanoribbons. Functionalization by various different molecules is a very popular method of tuning the properties of graphene. We have shown that it is possible to tune the properties of zigzag graphene nanoribbons by edge functionalization. Further, we have found that structures with clustered functionalization leads to “spatially” varying electronic structure, which can lead to interesting possibilities for electronic devices.
Chapter7:describes structural stability, electronic and magnetic properties of graphene nanoribbons in presence of topological defects such as Stone-Wales defects. Our study reveals that the sign of stress induced by a SW defect in a graphene nanoribbon depends on the orientation of the SW defect with respect to the ribbon edge and the relaxation of the structure to relieve this stress determines its stability. Local warping or wrinkles arise in graphene nanoribbon when the stress is compressive, while the structure remains planar otherwise. The specific consequences to armchair and zigzag graphene nanoribbon can be understood from the anisotropy of the stress induced by a SW defect embedded in bulk graphene. We also have found localized electronic states near the SW defect sites in a nanoribbon. However, warping results in delocalization of electrons in the defect states. We have observed that, in zigzag graphene nanoribbons magnetic ordering weakens due to the presence of SW defects at the edges and the ground state is driven towards that of a nonmagnetic metal.
|
78 |
Étude du graphène sous pression par spectroscopie de Raman / Studies of graphene under high pressure using Raman spectroscopyNicolle, Jimmy 16 November 2011 (has links)
La découverte en 2004 par K. Novoselov et al. d'une méthode simple pour transférer une couche d'atome de carbone, appelée graphène, de la face c- du graphite sur un substrat permettant d'effectuer des mesures des propriétés optiques et électroniques a engendré un grand intérêt autour de ce matériau qui était considéré jusqu'alors comme un composé théorique. Très rapidement, les mesures ont mis en évidence des propriétés électroniques, magnétiques, et mécaniques particulières et potentiellement intéressantes en vue d'applications technologiques futures. Les travaux effectués dans cette thèse nous ont permis d'explorer d'une façon originale ces propriétés. En effet, la pression permet de générer des contraintes mécaniques dans le matériau, mais aussi des phénomènes de dopage importants. Nous avons effectué des mesures sur des échantillons comportant de une à trois couches de graphène. Pour suivre l'évolution des propriétés des échantillons sous pression, nous avons effectué des mesures in situ par spectroscopie Raman. Cette thèse a ainsi permis de montrer un comportement mécanique particulier sous pression des échantillons comportant de une à deux couches de graphène, par rapport aux échantillons comportant trois couches et plus, ainsi qu'une dépendance importante de l'évolution des échantillons comportant de une à 2 couches vis-à-vis des conditions d'hydrostaticité ainsi que du dopage chimique / The discovery in 2004 by K. Novoselov et al. of a simple method for the transferred of an atomic carbon layer, called graphene, from the c- face of graphite to a wafer generate a lot of interest in the scientific community, as until this date the graphene was considered as a theoretical compound. Quickly the first experiment on this material highlights interesting electronic, magnetic, and mechanical properties for potential application in the future. This thesis proposes a new way in order to explore these properties, as the pressure was used in order to generate mechanical deformation in the graphene layers, and in order to modify the doping level. Using high pressure experiment coupled with Raman spectroscopy, we show that the mechanical properties of the graphene sample depend on the number of layers, on the condition of compression and on the doping phenomena
|
79 |
Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2Güttler, Monika, Generalov, Alexander V., Otrokov, M. M., Kummer, K., Kliemt, Kristin, Fedorov, Alexander, Chikina, Alla, Danzenbächer, Steffen, Schulz, S., Chulkov, Evgenii Vladimirovich, Koroteev, Yury Mikhaylovich, Caroca-Canales, Nubia, Shi, Ming, Radovic, Milan, Geibel, Christoph, Laubschat, Clemens, Dudin, Pavel, Kim, Timur K., Hoesch, Moritz, Krellner, Cornelius, Vyalikh, Denis V. 16 January 2017 (has links) (PDF)
Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.
|
80 |
MoS₂ decoration by Mo-atoms and the MoS₂– Mo–graphene heterostructure: a theoretical studyKvashnin, D. G., Sorokin, P. B., Seifert, G., Chernozatonskii, L. A. 13 January 2020 (has links)
Here we propose a completely new covalent heterostructure based on graphene and self-decorated MoS₂ monolayers. Detailed investigation of the decoration process of the MoS₂ surface by Mo adatoms was performed using first principles DFT methods. Comparison between valence-only and semicore pseudopotentials was performed to correctly describe the interaction between Mo adatoms and the MoS₂ surface. It was found that self-decoration by Mo atoms is favorable from an energetic point of view. We studied in detail various decoration paths of Mo atoms on the MoS₂ surface. The strong variation of electronic properties after the decoration of MoS₂ was found. The impact of the presence of Mo adatoms on the electronic properties of the graphene/MoS₂ heterostructure was shown.
|
Page generated in 0.0987 seconds