Spelling suggestions: "subject:"elektroenzephalographie"" "subject:"elektromyographie""
1 |
Holographische Abbildung von Nanostrukturen durch Projektions-ElektronenmikroskopieEisele, Andreas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Heidelberg.
|
2 |
Charakterisierung von Nanokristallen in Siliziumkarbid mittels TransmissionselektronenmikroskopieBiskupek, Johannes. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Jena.
|
3 |
Investigation of magnetic materials and semiconductor nanostructures by electron holographyZheng, Changlin January 2009 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2009
|
4 |
Untersuchung von Ober- und Grenzflächen mittels niederenergetischer PhotoelektronenbeugungDreiner, Stefan. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Münster (Westfalen).
|
5 |
Lorentz-Mikroskopie an ferromagnetischen Nanostrukturen im Vortex-RegimeHuber, Michael January 2007 (has links)
Zugl.: Regensburg, Univ., Diss., 2007
|
6 |
Spezielle Anwendungen der Transmissionselektronenmikroskopie in der SiliziumhalbleiterindustrieMühle, Uwe 17 February 2015 (has links) (PDF)
Die außerordentlichen Steigerungen der Funktionalität und Produktivität in der Halbleiterindustrie sind zum wesentlichen Teil auf eine Verkleinerung der Strukturdetails auf einer logarithmischen Skala über die letzten Jahrzehnte zurückzuführen. Sowohl zur Kontrolle des Fertigungsergebnisses als auch zur Klärung von Fehlerursachen ist die Nutzung transmissionselektronenmikroskopischer Methoden unabdingbar. Für die Zielpräparation von Halbleiterstrukturen sind Techniken unter Nutzung der Focused Ion Beam Geräte etabliert, die je nach der konkreten Aufgabenstellung variiert werden. Die Abbildung von Strukturdetails mit Abmessungen von wenigen Nanometern erfordert die Anwendung unterschiedlicher Kontrastmechanismen. Die Ergänzung der Abbildung durch die analytischen Techniken der energiedispersiven Röntgenmikroanalyse und der Elektronenenergieverlustanalyse ist ein wertvolles Werkzeug bei der Klärung von Fehlerursachen oder bei prozesstechnischen Fragestellungen. Die Nutzung der Rastertransmissionselektronenmikroskopie erlaubt die unmittelbare Kombination von Abbildung und Elementanalyse.
Die lokale Verteilung von Dotierstoffen als wesentliche Grundlage für die Funktion von Bauelementen in der Halbleiterindustrie ist nur über ihre Auswirkung auf die Phase der transmittierten Elektronenwelle nachweisbar. Mittels Elektronenholographie kann dieser Einfluss gemessen werden und das Prozessergebnis von Implantationen dargestellt werden. Für die Charakterisierung von Details, die kleiner als die Probendicken sind, die im TEM genutzt werden, ist die Anwendung der Elektronentomographie ein geeignetes Werkzeug. Dazu sind spezielle Präparations- und Abbildungsstrategien erforderlich. / The strong improvements in functionality and productivity in the semiconductor industry are mostly a result of the decrease of structural details on a logarithmic scale during the last decades. The monitoring of the production process, as well as failure analyses, utilize methods of transmission electron microscopy. For targeted preparations of semiconductor structures, techniques based on focused ion beams are established, with adaptions to the current task. The imaging of structural details with dimensions of a few nanometers requires the application of different contrast techniques, depending on the detailed request. Different opportunities of elemental analysis, such as energy dispersive X-ray analysis or electron energy loss analysis, deliver additional information about the chemical composition and binding states on a nanoscale. The use of scanning transmission electron microscopy enables a direct combination of imaging and elemental analysis.
The local distribution of dopants, as one of the major basics for the function of semiconductor devices, can be observed via the phase shift of the transmitted electron wave only. This influence requires the application of electron holography, a technique which enables the visualization of the process result of implantations or diffusion processes. The characterization of details which are smaller than the thickness of a TEM-sample is enabled through the use of electron tomography. This technique requires special strategies for preparation and imaging and delivers a 3D-dataset, describing the structure.
|
7 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 27 May 2010 (has links) (PDF)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
8 |
Spezielle Anwendungen der Transmissionselektronenmikroskopie in der SiliziumhalbleiterindustrieMühle, Uwe 21 November 2014 (has links)
Die außerordentlichen Steigerungen der Funktionalität und Produktivität in der Halbleiterindustrie sind zum wesentlichen Teil auf eine Verkleinerung der Strukturdetails auf einer logarithmischen Skala über die letzten Jahrzehnte zurückzuführen. Sowohl zur Kontrolle des Fertigungsergebnisses als auch zur Klärung von Fehlerursachen ist die Nutzung transmissionselektronenmikroskopischer Methoden unabdingbar. Für die Zielpräparation von Halbleiterstrukturen sind Techniken unter Nutzung der Focused Ion Beam Geräte etabliert, die je nach der konkreten Aufgabenstellung variiert werden. Die Abbildung von Strukturdetails mit Abmessungen von wenigen Nanometern erfordert die Anwendung unterschiedlicher Kontrastmechanismen. Die Ergänzung der Abbildung durch die analytischen Techniken der energiedispersiven Röntgenmikroanalyse und der Elektronenenergieverlustanalyse ist ein wertvolles Werkzeug bei der Klärung von Fehlerursachen oder bei prozesstechnischen Fragestellungen. Die Nutzung der Rastertransmissionselektronenmikroskopie erlaubt die unmittelbare Kombination von Abbildung und Elementanalyse.
Die lokale Verteilung von Dotierstoffen als wesentliche Grundlage für die Funktion von Bauelementen in der Halbleiterindustrie ist nur über ihre Auswirkung auf die Phase der transmittierten Elektronenwelle nachweisbar. Mittels Elektronenholographie kann dieser Einfluss gemessen werden und das Prozessergebnis von Implantationen dargestellt werden. Für die Charakterisierung von Details, die kleiner als die Probendicken sind, die im TEM genutzt werden, ist die Anwendung der Elektronentomographie ein geeignetes Werkzeug. Dazu sind spezielle Präparations- und Abbildungsstrategien erforderlich.:0. Gliederung
Danksagung 3
Kurzfassung / Abstract 5
Abkürzungsverzeichnis 7
Verzeichnis der Symbole 9
0 Gliederung 13
1 Einleitung 15
1.1 Rahmenbedingungen der Halbleiterindustrie 15
1.2 Typische Strukturen und Fragestellungen in Halbleiterbauelementen 17
1.3 Analytische Untersuchungen an Halbleiterstrukturen 19
2 Einordnung der TEM in die Analytik von Halbleiterbauelementen 23
2.1 Einsatz struktur- und elementanalytischer Verfahren in der Halbleiterindustrie 23
2.2 Beitrag der Transmissionselektronenmikroskopie zu den Fragestellungen 25
2.3 Beispiele typischer Halbleiterstrukturen 27
2.4 Anforderungen an ein TEM für den Einsatz an einem Halbleiterproduktionsstandort
31
3 Präparation von Halbleiterstrukturen Untersuchung im TEM 35
3.1 Mechanische Vorbereitung 35
3.2 Endabdünnung größerer Bereiche 36
3.3 Zielpräparationen mittels Focused Ion Beam Technik 37
3.4 Lift-Out Techniken 40
4 Abbildende Untersuchungen und strukturanalytische Charakterisierung 45
4.1 Abbildungstechniken für mittlere Ortsauflösungen 46
4.2 Hochauflösende Abbildung kristalliner Bestandteile 56
4.3 Rastertransmissionselektronenmikroskopie 59
4.4 Elektronenbeugung 61
5 Elementanalytische Untersuchungen 65
5.1 Energiedispersive Röntgenanalyse im TEM 65
5.2 Nutzung von Energieverlusten der Elektronen zur Materialcharakterisierung 71
5.2.1 Ansatz und technische Lösungen 71
5.2.2 Elektronenenergiverlustspektroskopie 73
5.2.3 Energiegefilterte Abbildung 76
5.3 Spezielle Anwendungen von EELS und Energiefilterung 80
5.3.1 Energiegefilterte Abbildung unter Nutzung der Plasmonenmaxima 80
5.3.2 Nachweis der Bildung von Verbindungen 84
5.3.3 Abbildung mit reduziertem Energiefenster auf der elementspezifischen Kante 86
5.4 Energiegefilterte Abbildung im STEM-HAADF Modus 87
5.5 Kombination von Abbildung und Elementanalytik („Spectrum Imaging“) 93
14
6 Elektronenholographie 101
6.1 Prinzipielle Fragestellung 101
6.2 Physikalisches Prinzip der Elektronenholographie 109
6.3 Technische Umsetzung bei der Off-axis Holographie 112
6.4 Besonderheiten der Probenpräparation für elektronenholographische
Untersuchungen
116
6.5 Hologrammaufnahme und numerische Auswertung 120
6.6 Anwendungen der Elektronenholographie an Halbleiterstrukturen 124
6.7 Elektronenholographische Untersuchungen ohne Einsatz einer Lorentzlinse 130
6.8 Möglichkeiten der Inline Holographie 134
7 Elektronentomographie 137
7.1 Prinzipielle Fragestellung 137
7.2 Theoretischer Ansatz zur Lösung 138
7.3 Praktische Umsetzung 143
7.4 Beispielhafte Ergebnisse 148
7.4.1 Charakterisierung von Diffusionsbarrieren 148
7.4.2 Geometrie des Substrates nach komplexer Prozessierung 150
7.4.3 Beschreibung und Messmöglichkeiten an 3-dimensional aufgebauten
Transistoren
151
7.4.4 Fehleranalyse an Transistoren größerer Dimension 154
8 Zusammenfassung und Ausblick 157
8.1 Präparative Aspekte 157
8.2 Neue Herausforderungen an die Abbildungstechnik 158
8.3 Elementanalytische Arbeitstechniken 160
8.4 Elektronenholographie 161
8.5 Elektronentomographie 162
8.6 Weitere Fragestellungen 163
9 Literaturverzeichnis 165 / The strong improvements in functionality and productivity in the semiconductor industry are mostly a result of the decrease of structural details on a logarithmic scale during the last decades. The monitoring of the production process, as well as failure analyses, utilize methods of transmission electron microscopy. For targeted preparations of semiconductor structures, techniques based on focused ion beams are established, with adaptions to the current task. The imaging of structural details with dimensions of a few nanometers requires the application of different contrast techniques, depending on the detailed request. Different opportunities of elemental analysis, such as energy dispersive X-ray analysis or electron energy loss analysis, deliver additional information about the chemical composition and binding states on a nanoscale. The use of scanning transmission electron microscopy enables a direct combination of imaging and elemental analysis.
The local distribution of dopants, as one of the major basics for the function of semiconductor devices, can be observed via the phase shift of the transmitted electron wave only. This influence requires the application of electron holography, a technique which enables the visualization of the process result of implantations or diffusion processes. The characterization of details which are smaller than the thickness of a TEM-sample is enabled through the use of electron tomography. This technique requires special strategies for preparation and imaging and delivers a 3D-dataset, describing the structure.:0. Gliederung
Danksagung 3
Kurzfassung / Abstract 5
Abkürzungsverzeichnis 7
Verzeichnis der Symbole 9
0 Gliederung 13
1 Einleitung 15
1.1 Rahmenbedingungen der Halbleiterindustrie 15
1.2 Typische Strukturen und Fragestellungen in Halbleiterbauelementen 17
1.3 Analytische Untersuchungen an Halbleiterstrukturen 19
2 Einordnung der TEM in die Analytik von Halbleiterbauelementen 23
2.1 Einsatz struktur- und elementanalytischer Verfahren in der Halbleiterindustrie 23
2.2 Beitrag der Transmissionselektronenmikroskopie zu den Fragestellungen 25
2.3 Beispiele typischer Halbleiterstrukturen 27
2.4 Anforderungen an ein TEM für den Einsatz an einem Halbleiterproduktionsstandort
31
3 Präparation von Halbleiterstrukturen Untersuchung im TEM 35
3.1 Mechanische Vorbereitung 35
3.2 Endabdünnung größerer Bereiche 36
3.3 Zielpräparationen mittels Focused Ion Beam Technik 37
3.4 Lift-Out Techniken 40
4 Abbildende Untersuchungen und strukturanalytische Charakterisierung 45
4.1 Abbildungstechniken für mittlere Ortsauflösungen 46
4.2 Hochauflösende Abbildung kristalliner Bestandteile 56
4.3 Rastertransmissionselektronenmikroskopie 59
4.4 Elektronenbeugung 61
5 Elementanalytische Untersuchungen 65
5.1 Energiedispersive Röntgenanalyse im TEM 65
5.2 Nutzung von Energieverlusten der Elektronen zur Materialcharakterisierung 71
5.2.1 Ansatz und technische Lösungen 71
5.2.2 Elektronenenergiverlustspektroskopie 73
5.2.3 Energiegefilterte Abbildung 76
5.3 Spezielle Anwendungen von EELS und Energiefilterung 80
5.3.1 Energiegefilterte Abbildung unter Nutzung der Plasmonenmaxima 80
5.3.2 Nachweis der Bildung von Verbindungen 84
5.3.3 Abbildung mit reduziertem Energiefenster auf der elementspezifischen Kante 86
5.4 Energiegefilterte Abbildung im STEM-HAADF Modus 87
5.5 Kombination von Abbildung und Elementanalytik („Spectrum Imaging“) 93
14
6 Elektronenholographie 101
6.1 Prinzipielle Fragestellung 101
6.2 Physikalisches Prinzip der Elektronenholographie 109
6.3 Technische Umsetzung bei der Off-axis Holographie 112
6.4 Besonderheiten der Probenpräparation für elektronenholographische
Untersuchungen
116
6.5 Hologrammaufnahme und numerische Auswertung 120
6.6 Anwendungen der Elektronenholographie an Halbleiterstrukturen 124
6.7 Elektronenholographische Untersuchungen ohne Einsatz einer Lorentzlinse 130
6.8 Möglichkeiten der Inline Holographie 134
7 Elektronentomographie 137
7.1 Prinzipielle Fragestellung 137
7.2 Theoretischer Ansatz zur Lösung 138
7.3 Praktische Umsetzung 143
7.4 Beispielhafte Ergebnisse 148
7.4.1 Charakterisierung von Diffusionsbarrieren 148
7.4.2 Geometrie des Substrates nach komplexer Prozessierung 150
7.4.3 Beschreibung und Messmöglichkeiten an 3-dimensional aufgebauten
Transistoren
151
7.4.4 Fehleranalyse an Transistoren größerer Dimension 154
8 Zusammenfassung und Ausblick 157
8.1 Präparative Aspekte 157
8.2 Neue Herausforderungen an die Abbildungstechnik 158
8.3 Elementanalytische Arbeitstechniken 160
8.4 Elektronenholographie 161
8.5 Elektronentomographie 162
8.6 Weitere Fragestellungen 163
9 Literaturverzeichnis 165
|
9 |
Quantitative Messung von Dotiergebieten in FIB-präparierten Silizium-Halbleiterbauelementen mittels ElektronenholographieLenk, Andreas 21 November 2008 (has links) (PDF)
Das Einbringen von Dotierstoffen in das Substratmaterial ist einer der wichtigsten Teilprozesse in der Halbleiterindustrie. Größe, Lage und Konzentration elektrisch aktiver Dotiergebiete bestimmen wesentlich die Eigenschaften der mikroelektronischen Basisbauelemente und damit die Funktionalität der Endprodukte. Die kontinuierliche Verkleinerung dieser Bauelemente zieht steigende Anforderungen an die Präzision bei ihrer Herstellung nach sich. Analyseverfahren, mit denen die genannten Kenngrößen gemessen werden können, sind aus diesem Grund von hoher Bedeutung. Elektronenholographie ist eine dafür prinzipiell geeignete Messmethode, da sie eine zweidimensionale Vermessung der durch die Dotanden veränderten Potentialstruktur des Halbleiters in der geforderten Ortsauflösung von wenigen nm erlaubt. Ein Teil dieser Arbeit befasst sich mit der Optimierung der für die holographische Untersuchung wichtigen Parameter. Zu diesem Zweck werden sowohl präparative Aspekte wie geeignete Probendicke und Struktur der Proben als auch messtechnische Aspekte wie kohärente Beleuchtung und TEM-Parameter diskutiert. Während sich der Hauptteil der Arbeit mit den dabei gewonnenen wissenschaftlichen Erkenntnissen befasst, werden im Anhang die bei Präparation und Messung wichtigen Details ausführlich beschrieben. Ein wesentliches Problem bei der elektronenholographischen Messung stellt die Präparation der Objekte für die Untersuchung im TEM dar. Die einzige sinnvolle Möglichkeit für eine industrielle Anwendung ist die Zielpräparation mit dem fokussierten Ionenstrahl („FIB“), da keine andere Methode vergleichbar effizient arbeitet. Leider wird bei dieser Art von Präparation die Probe von der Oberfläche bis in eine gewisse Tiefe sowohl strukturell als auch elektrisch verändert. Diese Artefakte beeinflussen das Ergebnis der hochsensiblen holographischen Messung. Um die gewonnenen Daten dennoch verlässlich quantitativ auswerten zu können, muss klar zwischen ursprünglichen Objekteigenschaften und präparativ induzierten Schädigungen unterschieden werden. Um dieses Ziel zu erreichen, wurden durch die FIB-Präparation hervorgerufene Schädigungen der Probe systematisch analysiert. Mit Hilfe von SIMS konnte die Tiefenverteilung des beim Ionenschneiden eingedrungenen Fremdmaterials gemessen werden. Es wurden Querschnitte von FIB-Proben durch konventionelle, holographische sowie holographisch-tomographische Abbildung im TEM an einer eigens dafür entwickelten nadelförmigen Probengeometrie untersucht. Dabei wurden die entstandenen strukturellen und elektrischen Veränderungen beobachtet und quantitativ charakterisiert. Der Einsatz von Tomographie erlaubte schließlich die Messung der Potentialverteilung im Inneren der Nadeln ohne eine Verfälschung durch Projektionseffekte. Es wurde gezeigt, dass die über die Schädigungen gewonnenen Erkenntnisse für eine Korrektur der holographischen Daten genutzt werden können. Dazu wurden entsprechende Untersuchungen an verschiedenen Bauelementen aus der Halbleiterindustrie durchgeführt. Die korrigierten Ergebnisse wurden dabei stets mit den theoretischen Erwartungen verglichen.
|
10 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 07 May 2010 (has links)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
Page generated in 0.0999 seconds