• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 7
  • 3
  • Tagged with
  • 38
  • 21
  • 11
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Simulations of laser-induced correlated many-electron dynamics in molecular systems

Klinkusch, Stefan January 2011 (has links)
In this thesis, simulations of laser-driven many-electron dynamics in molecules are presented, i.e., the interaction between molecules and an electromagnetic field is demonstrated. When a laser field is applied to a molecular system, a population of higher electronic states takes place as well as other processes, e.g. photoionization, which is described by an appropriate model. Also, a finite lifetime of an excited state can be described by such a model. In the second part, a method is postulated that is capable of describing electron correlation in a time-dependent scheme. This is done by introducing a single-electron entropy that is at least temporarily minimized in a further step. / Im Rahmen dieser Doktorarbeit werden Simulationen lasergetriebener Vielelektronendynamik in Molekülen präsentiert, d.h., die Wechselwirkung zwischen Molekülen und einem elektromagnetischen Feld wird demonstriert. Bei Laseranregungen finden nicht nur elektronische Übergänge statt, sondern auch weitere Prozesse wie die Photoionisation, die mit einem geeigneten Modell beschrieben wird. Auch die endliche Lebensdauer angeregter Zustände kann mit einem solchen Modell beschrieben werden. Im zweiten Teil wird eine Methode postuliert, die fähig ist, die Elektronenkorrelation zeitabhängig zu beschreiben. Dies wird durch die Einführung einer Einelektronenentropie erreicht, die in einem weiteren Schritt zumindest kurzzeitig minimiert wird.
22

Correlated ground state ab initio studies of polymers

Abdurahman, Ayjamal 19 December 2000 (has links) (PDF)
In this thesis we have investigated the correlated ground state properties of polymers by applying wave-function-based ab-initio quantum-chemical methods such as the Hartree-Fock approach, the full configuration interaction method (FCI), coupled-cluster (CC) and Moller-Plesset second-order perturbation (MP2) theory. The polymers we have studied are the boron-nitrogen polymers, i.e., polyiminoborane (PIB) and polyaminoborane (PAB), the lithium hydride chain and the beryllium hydride polymer as well as the polymethineimine (PMI). The optimized structural parameters, cohesive energies, polymerization ernergies, relative stabilities of isomeric forms and some band structure results are presented. The results demonstrated that quantum chemical ab initio methods can be applied successfully to infinite systems like polymers, although such calculations are still far from being routine.
23

Correlation effects in 2-dimensional electron systems composite fermions and electron liquid crystals /

Göres, Jörn, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
24

Spin phenomena in the fractional quantum hall effect NMR and magnetotransport studies /

Stern, Omar I., January 2005 (has links) (PDF)
Stuttgart, Univ., Diss., 2005.
25

Nonequilibrium effects in strongly correlated systems

Schmidt, Petra. Unknown Date (has links) (PDF)
University, Diss., 2004--Bonn.
26

Correlated Topological Responses In Dynamical Synthetic Quantum Matter / Korrelierte topologische Antwortsignale in dynamischer synthetischer Quantenmaterie

Körber, Simon Erhard January 2023 (has links) (PDF)
The last years have witnessed an exciting scientific quest for intriguing topological phenomena in time-dependent quantum systems. A key to many manifestations of topology in dynamical systems relies on the effective dimensional extension by time-periodic drives. An archetypal example is provided by the Thouless pump in one spatial dimension, where a robust and quantized charge transport can be described in terms of an integer quantum Hall effect upon interpreting time as an extra dimension. Generalizing this fundamental concept to multifrequency driving, a variety of higher-dimensional topological models can be engineered in dynamical synthetic dimensions, where the underlying topological classification leads to quantized pumping effects in the associated lower-dimensional time-dependent systems. In this Thesis, we explore how correlations profoundly impact the topological features of dynamical synthetic quantum materials. More precisely, we demonstrate that the interplay of interaction and dynamical synthetic dimension gives rise to striking topological phenomena that go beyond noninteracting implementations. As a starting point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely a two-level system driven by two incommensurate frequencies. In this model, the topologically quantized response translates into a process in which photons of different frequencies are exchanged between the external modes, referred to as topological frequency conversion. We extend this prototypical setup to an interacting version, focusing on the minimal case of two correlated spins equally exposed to the external drives. We show that the topological invariant determining the frequency conversion can be changed by odd integers, something explicitly forbidden in the noninteracting limit of two identical spins. This correlated topological feature may, in turn, result in an enhancement of the quantized response. Robust response signals, such as those predicted for the topological frequency converter, are of fundamental interest for potential technological applications of topological quantum matter. Based on an open quantum system implementation of the frequency converter, we propose a novel mechanism of topological quantization coined ''topological burning glass effect''. Remarkably, this mechanism amplifies the local response of the driven two-level system by an integer that is proportional to the number of environmental degrees of freedom to which the system is strongly coupled. Specifically, our findings are illustrated by the extension of the frequency converter to a central spin model. There, the local energy transfer mediated exclusively by the central spin is significantly enhanced by the collective motion of the surrounding spins. In this sense, the central spin adopts the topological nature of the total system in its non-unitary dynamics, taking into account the correlations with the environment. / In den letzten Jahren hat sich eine spannende Suche nach faszinierenden topologischen Phänomenen in zeitabhängigen Quantensystemen entwickelt. Ein Schlüssel zu zahlreichen Ausprägungen der Topologie in dynamischen Systemen beruht auf der effektiven Dimensionserweiterung durch zeitlich-periodische Antriebe. Ein Beispiel ist die Thouless-Pumpe in einer räumlichen Dimension, in der ein robuster und quantisierter Ladungstransport mittels eines Quanten-Hall-Effekts beschrieben werden kann, sofern Zeit als zusätzliche Dimension interpretiert wird. Durch Verallgemeinerung dieses Grundkonzepts auf Multifrequenzantriebe kann eine Vielzahl höherdimensionaler topologischer Modelle in zeitlich synthetischen Dimensionen konstruiert werden, bei denen die zugrunde liegende topologische Klassifikation zu quantisierten Pumpeffekten in den zugehörigen niederdimensionalen zeitabhängigen Systemen führt. In dieser Dissertation wird untersucht, wie Korrelationen die topologischen Eigenschaften von zeitlich synthetischen Quantenmaterialen maßgeblich beeinflussen. Konkret wird gezeigt, dass das Zusammenspiel von Wechselwirkung und zeitlicher synthetischer Dimension zu erstaunlichen topologischen Phänomenen führt, die über nicht-wechselwirkende Realisierungen hinausgehen. Als Ausgangspunkt wird das Floquet-Gegenstück eines Quanten-Hall-Szenarios genutzt, ein Zwei-Niveau-System, das von zwei inkommensurablen Frequenzen getrieben wird. In diesem Modell spiegelt sich die topologisch quantisierte Antwort in einen Prozess wider, bei dem Photonen verschiedener Frequenzen zwischen den externen Moden ausgetauscht werden, auch bekannt als topologische Frequenzumwandlung. Wir erweitern dieses prototypische Setup auf eine interagierende Version, indem wir uns auf den Minimalfall zweier korrelierter Spins konzentrieren, die gleichermaßen den externen Antrieben ausgesetzt sind. Wir zeigen, dass die topologische Invariante, die die Frequenzumwandlung bestimmt, durch ungerade ganze Zahlen verändert werden kann. Ein Zustand, der im nicht-wechselwirkenden Fall ausdrücklich verboten ist. Dieses korrelierte topologische Verhalten kann wiederum zu einer Verstärkung der quantisierten Antwort führen. Robuste Antwortsignale, wie sie für den topologischen Frequenzumwandler vorhergesagt werden, sind von grundlegendem Interesse für potentielle technologische Anwendungen der topologischen Quantenmaterie. Basierend auf einer offenen Quantensystem-Realisierung des Frequenzumwandlers schlagen wir einen neuartigen Mechanismus der topologischen Quantisierung vor, den wir als ''topologischen Brennglaseffekt'' bezeichnen. Dieser Mechanismus verstärkt die lokale Antwort des getriebenen Zwei-Niveau-Systems um eine ganze Zahl, die proportional zur Anzahl der Freiheitsgrade der Umgebung ist, an die das System koppelt. Konkret werden unsere Erkenntnisse durch die Erweiterung des Frequenzumwandlers auf ein Zentralspinmodell veranschaulicht. Der lokale Energietransfer, der ausschließlich durch den zentralen Spin vermittelt wird, wird durch die kollektive Bewegung der umgebenden Spins maßgeblich verstärkt. In diesem Sinne erbt der Zentralspin die topologische Natur des Gesamtsystems in seiner nicht-unitären Dynamik, die die Korrelationen mit der Umgebung berücksichtigt.
27

Emergent phenomena in strongly correlated electron systems: Auxiliary particle approach to the many-body problem / Emergente Phänomene in stark korrelierten Elektronensystemen: Hilfsteilchenansatz für das Vielteilchenproblem

Riegler, David January 2022 (has links) (PDF)
Emergent phenomena in condensed matter physics like, e.g., magnetism, superconductivity, or non-trivial topology often come along with a surprise and exert great fascination to researchers up to this day. Within this thesis, we are concerned with the analysis of associated types of order that arise due to strong electronic interactions and focus on the high-\(T_c\) cuprates and Kondo systems as two prime candidates. The underlying many-body problem cannot be solved analytically and has given rise to the development of various approximation techniques to tackle the problem. In concrete terms, we apply the auxiliary particle approach to investigate tight-binding Hamiltonians subject to a Hubbard interaction term to account for the screened Coulomb repulsion. Thereby, we adopt the so-called Kotliar-Ruckenstein slave-boson representation that reduces the problem to non-interacting quasiparticles within a mean-field approximation. Part I provides a pedagogical review of the theory and generalizes the established formalism to encompass Gaussian fluctuations around magnetic ground states as a crucial step to obtaining novel results. Part II addresses the two-dimensional one-band Hubbard model, which is known to approximately describe the physics of the high-\(T_c\) cuprates that feature high-temperature superconductivity and various other exotic quantum phases that are not yet fully understood. First, we provide a comprehensive slave-boson analysis of the model, including the discussion of incommensurate magnetic phases, collective modes, and a comparison to other theoretical methods that shows that our results can be massively improved through the newly implemented fluctuation corrections. Afterward, we focus on the underdoped regime and find an intertwining of spin and charge order signaled by divergences of the static charge susceptibility within the antiferromagnetic domain. There is experimental evidence for such inhomogeneous phases in various cuprate materials, which has recently aroused interest because such correlations are believed to impact the formation of Cooper pairs. Our analysis identifies two distinct charge-ordering vectors, one of which can be attributed to a Fermi-surface nesting effect and quantitatively fits experimental data in \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), an electron-doped cuprate compound. The other resembles the so-called Yamada relation implying the formation of periodic, double-occupied domain walls with a crossover to phase separation for small dopings. Part III investigates Kondo systems by analyzing the periodic Anderson model and its generalizations. First, we consider Kondo metals and detect weakly magnetized ferromagnetic order in qualitative agreement with experimental observations, which hinders the formation of heavy fermions. Nevertheless, we suggest two different parameter regimes that could host a possible Kondo regime in the context of one or two conduction bands. The part is concluded with the study of topological order in Kondo insulators based on a three-dimensional model with centrosymmetric spin-orbit coupling. Thereby, we classify topologically distinct phases through appropriate \(\mathbb{Z}_2\) invariants and consider paramagnetic and antiferromagnetic mean-field ground states. Our model parameters are chosen to specifically describe samarium hexaboride (\(\mbox{SmB}_6\)), which is widely believed to be a topological Kondo insulator, and we identify topologically protected surface states in agreement with experimental evidence in that material. Moreover, our theory predicts the emergence of an antiferromagnetic topological insulator featuring one-dimensional hinge-states as the signature of higher-order topology in the strong coupling regime. While the nature of the true ground state is still under debate, corresponding long-range magnetic order has been observed in pressurized or alloyed \(\mbox{SmB}_6\), and recent experimental findings point towards non-trivial topology under these circumstances. The ability to understand and control topological systems brings forth promising applications in the context of spintronics and quantum computing. / Emergente Phänomene in der Physik der kondensierten Materie, wie z. B. Magnetismus, Supraleitung oder nicht-triviale Topologie gehen oft mit Überraschungen einher und faszinieren Wissenschaftler bis heute. Innerhalb dieser Arbeit befassen wir uns mit der Analyse damit assoziierter Art von Ordnung, die durch starke elektronische Wechselwirkungen entsteht und konzentrieren uns auf die Kuprat-Hochtemperatursupraleiter und Kondo-Systeme als zwei prominente Kandidaten. Das zugrunde liegende Vielteilchenproblem kann nicht analytisch gelöst werden und hat zur Entwicklung vielfältiger Näherungsverfahren geführt, um das Problem anzugehen. Konkret wenden wir den Hilfsteilchenansatz an, um tight-binding Hamiltonoperatoren zu untersuchen, die einen Hubbard-Wechselwirkungsterm aufweisen, um die abgeschirmte Coulomb-Abstoßung zu berücksichtigen. Dabei benutzen wir die sogenannte Kotliar-Ruckenstein-Slave-Boson-Darstellung, die das Problem im Rahmen einer Molekularfeldnäherung auf nicht-wechselwirkende Quasiteilchen zurückführt. Teil I beinhaltet eine pädagogisch aufgearbeitete Zusammenfassung der Theorie und verallgemeinert durch die Berücksichtigung Gaußscher Fluktuationen um magnetische Grundzustände den etablierten Formalismus, was sich als entscheidender Schritt herausstellt, um neuartige Ergebnisse erzielen zu können. Teil II befasst sich mit dem zweidimensionalen Einband-Hubbard-Modell, von dem bekannt ist, dass es näherungsweise die Physik der Kuprat-Hochtemperatursupraleiter beschreibt, welche Hochtemperatursupraleitung und verschiedene andere exotische Quantenphasen aufweisen, die noch nicht vollständig verstanden sind. Zunächst machen wir eine ausführliche Slave-Boson-Analyse des Modells, einschließlich der Diskussion inkommensurabler magnetischer Phasen, kollektiver Moden und eines Vergleichs mit anderen theoretischen Methoden, der zeigt, dass unsere Ergebnisse durch die neu implementierten Fluktuationskorrekturen massiv verbessert werden können. Danach konzentrieren wir uns auf den unterdotierten Bereich und finden eine Verflechtung von Spin- und Ladungsordnung, die durch Divergenzen der statischen Ladungssuszeptibilität innerhalb der antiferromagnetischen Domäne signalisiert wird. Es gibt experimentelle Hinweise auf derartige inhomogene Phasen in verschiedenen Kuprat-Materialien, was in letzter Zeit vermehrt Interesse geweckt hat, da angenommen wird, dass entsprechende Korrelationen die Bildung von Cooper-Paaren beeinflussen. Unsere Analyse identifiziert zwei unterschiedliche Ladungsordnungsvektoren, von denen einer einem Fermi-Flächeneffekt zugeschrieben werden kann und quantitativ zu experimentellen Daten von \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), einer elektronendotierten Kupratverbindung, passt. Der andere erinnert an die sogenannte Yamada-Beziehung und impliziert die Bildung von periodischen, doppelt besetzten Domänenwänden und einem Übergang zu Phasenseperation für kleine Dotierungen. Teil III untersucht Kondo-Systeme durch Analyse des periodischen Anderson-Modells und seiner Verallgemeinerungen. Zunächst betrachten wir Kondo-Metalle und finden schwach magnetisierte ferromagnetische Ordnung in qualitativer Übereinstimmung mit experimentellen Beobachtungen, welche die Bildung von schweren Fermionen hemmt. Dennoch identifizieren wir zwei verschiedene Parameterbereiche, die ein mögliches Kondo-Regime im Kontext von einem oder zwei Leitungsbändern beherbergen könnten. Der Teil wird mit der Untersuchung topologischer Ordnung in Kondo-Isolatoren basierend auf einem dreidimensionalen Modell mit zentrosymmetrischer Spin-Bahn-Kopplung abgeschlossen. Dabei klassifizieren wir topologisch unterscheidbare Phasen durch geeignete \(\mathbb{Z}_2\)-Invarianten und betrachten paramagnetische und antiferromagnetische Molekularfeld-Grundzustände. Unsere Modellparameter wurden gewählt, um insbesondere Samariumhexaborid (\(\mbox{SmB}_6\)) zu beschreiben, von dem allgemein angenommen wird, dass es sich um einen topologischen Kondo-Isolator handelt, und wir identifizieren topologisch geschützte Oberflächenzustände in Übereinstimmung mit experimentellen Befunden in diesem Material. Darüber hinaus sagt unsere Theorie die Emergenz eines antiferromagnetischen topologischen Isolators mit eindimensionalen Randzuständen als Merkmal von Topologie höherer Ordnung im Parameterbereich starker Korrelationen voraus. Während das Wesen des korrekten Grundzustands noch umstritten ist, wurde eine entsprechende langreichweitige magnetische Ordnung in unter Druck stehendem oder legiertem \(\mbox{SmB}_6\) beobachtet und kürzliche experimentelle Befunde weisen unter diesen Umständen auf nicht-triviale Topologie hin. Die Fähigkeit, topologische Systeme zu verstehen und zu kontrollieren, bringt vielversprechende Anwendungen im Kontext von Spintronik und Quantencomputing hervor.
28

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 20 January 2002 (has links) (PDF)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.
29

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 30 August 2001 (has links)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.
30

Correlated ground state ab initio studies of polymers

Abdurahman, Ayjamal 20 December 2000 (has links)
In this thesis we have investigated the correlated ground state properties of polymers by applying wave-function-based ab-initio quantum-chemical methods such as the Hartree-Fock approach, the full configuration interaction method (FCI), coupled-cluster (CC) and Moller-Plesset second-order perturbation (MP2) theory. The polymers we have studied are the boron-nitrogen polymers, i.e., polyiminoborane (PIB) and polyaminoborane (PAB), the lithium hydride chain and the beryllium hydride polymer as well as the polymethineimine (PMI). The optimized structural parameters, cohesive energies, polymerization ernergies, relative stabilities of isomeric forms and some band structure results are presented. The results demonstrated that quantum chemical ab initio methods can be applied successfully to infinite systems like polymers, although such calculations are still far from being routine.

Page generated in 0.1087 seconds