• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 10
  • 9
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 169
  • 34
  • 33
  • 29
  • 26
  • 25
  • 22
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A novel design to reduce the common mode noise for a pair of differential transmission-line bend

Hsu, Chia-Hsang 31 July 2012 (has links)
In recent year, the single-end transmission line is instead by differential transmission line . Differential signaling has been generally used in the high speed digital interconnection on the PCBs. The advantages of the differential signal with a low noise and high common-mode noise suppression, but the differential mode transmission signal is a very high quality requirements of circuit, the two line should have same length and symmetry, but in the practical package the circuit is not this case, In the limit space ,the differential signal should through the bend, it would lead to the phase skew and produce the differential to common mode conversion noise on the signal integrity and electromagnetic interference(EMI) problem. In this paper a new type of bend is proposed that reduces differential -to-common mode conversion noise for high speed digital circuit. This novel structure can reduce the mode conversion over 20dB at DC to 10GHz, and the differential insertion loss remains low. Also time domain the TDT common mode noise from 0.09V to 0.008V as compared with the bended differential transmission line using the edge couple bend. Moreover, the measurement on proposed structure show a close match with the full-wave simulation result. However, this structure does not have a reference plane, the return path is not complete, the current is easy to radiate out, so I design a guard trace to reduce the radiation in this structure.
32

Investigation of ESD Protection Devices in High-speed Digital System

Jan, Yi-Lun 03 July 2005 (has links)
In the trends of high clock rate, lower voltage, small volume, and portable requirement for present electric products, the noise immunity of high speed digital circuit becomes a critical factor for system designer. ESD problem becomes more and more important for electric products because of the triboelectricity caused by human body and synthetic material. It¡¦s an important issue for designer to understand the ESD phenomena in grounding and floating system accurately. In this thesis, a reliable setup for the ESD measurement is proposed both in grounding and floating systems. ESD behavior and protection devices are studied in detail and a corresponding SPICE model is built up for simulation validation.
33

Theoretical Analysis and Measurement for ESD Phenomenon

Lai, Po-Ching 28 June 2006 (has links)
The trends of present design in electronic systems are towards high speed, small size, and lower voltage levels. The noise immunity of high speed digital circuit decreases. ESD problem becomes more and more important for electric products because of the triboelectricity caused by human body with synthetic material. In this thesis we introduce the phenomenon in real life ESD caused by a charged human body source. Then we provide a good measurement method of ESD which enhances the repetition that gives a reliable and accurate result. Finally we try to build the numerical model for the air and contact discharge simulation by FDTD to provide a good measurement validation.
34

A Study on the Statistical Models of Normalized Site Attenuation(NSA) Measurements for Electromagnetic Interference(EMI)

Cheng, Chiung-Ping 20 June 2003 (has links)
In this work, we discuss the accuracy of measurements for electromagnetic. The two kinds of antenna we use are Dipole antenna and Broadband antenna. In general, if the antenna measurements we recorded at different frequencies do not exceed the ideal value $pm 4$dB, we would regard this site as a normalized site, otherwise it is not a normalized site(just a measurement exceeds the range). Traditionally, all we use is Dipole antenna, but due to difficulty of operation and inaccuracy of Dipole antenna, we investigate by statistical methods if we may use the Broadband antenna to replace the traditional Dipole antenna to measure. First of all, we introduce the data and procedure in the experiments, and fit a statistical regression model to predict the measurements at different frequencies in different test setups. Then, according to the data we collected, use the change point models to modify the statistical models. Our goal is to find a suitable statistical model for the measurements. Finally, we compare the measurements of Broadband antenna with Dipole antenna in the other experimental conditions keep the same.
35

FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES IN EPOXY COMPOSITES

Fitzwater, Chris 01 January 2010 (has links)
Multi-walled carbon nanotubes (MWNTs) are a relatively new allotrope of carbon that have potentially useful properties that may improve polymer composites. The work of this thesis explores the interactions between MWNTs and functionalized MWNTs within epoxy matrix and the properties of the MWNT/epoxy composite. These interactions were characterized with an emphasis on finding how well the MWNT/epoxy composite flows and how conductive it is after curing.
36

Metamaterials for Decoupling Antennas and Electromagnetic Systems

Bait Suwailam, Mohammed 13 April 2011 (has links)
This research focuses on the development of engineered materials, also known as meta- materials, with desirable effective constitutive parameters: electric permittivity (epsilon) and magnetic permeability (mu) to decouple antennas and noise mitigation from electromagnetic systems. An interesting phenomenon of strong relevance to a wide range of problems, where electromagnetic interference is of concern, is the elimination of propagation when one of the constitutive parameters is negative. In such a scenario, transmission of electromagnetic energy would cease, and hence the coupling between radiating systems is reduced. In the first part of this dissertation, novel electromagnetic artificial media have been developed to alleviate the problem of mutual coupling between high-profile and ow-profile antenna systems. The developed design configurations are numerically simulated, and experimentally validated. In the mutual coupling problem between high-profile antennas, a decoupling layer based on artificial magnetic materials (AMM) has been developed and placed between highly-coupled monopole antenna elements spaced by less than Lambda/6, where Lambda is the operating wavelength of the radiating elements. The decoupling layer not only provides high mutual coupling suppression (more than 20-dB) but also maintains good impedance matching and low correlation between the antenna elements suitable for use in Multiple-Input Multiple-Output (MIMO) communication systems. In the mutual coupling problem between low-profile antennas, novel sub-wavelength complementary split-ring resonators (CSRRs) are developed to decouple microstrip patch antenna elements. The proposed design con figuration has the advantage of low-cost production and maintaining the pro file of the antenna system unchanged without the need for extra layers. Using the designed structure, a 10-dB reduction in the mutual coupling between two patch antennas has been achieved. The second part of this dissertation utilizes electromagnetic artificial media for noise mitigation and reduction of undesirable electromagnetic radiation from high-speed printed-circuit boards (PCBs) and modern electronic enclosures with openings (apertures). Numerical results based on the developed design configurations are presented, discussed, and compared with measurements. To alleviate the problem of simultaneous switching noise (SSN) in high-speed microprocessors and personal computers, a novel technique based on cascaded CSRRs has been proposed. The proposed design has achieved a wideband suppression of SSN and maintained a robust signal integrity performance. A novel use of electromagnetic bandgap (EBG) structures has been proposed to mitigate undesirable electromagnetic radiation from enclosures with openings. By using ribbon of EBG surfaces, a significant suppression of electromagnetic radiation from openings has been achieved.
37

3-D jetting for enhanced functionality of thermoset elastomeric materials

Lukic, Marija January 2017 (has links)
The aim of this work was to assess the feasibility of 3-D inkjet printing of elastomers in latex form to create a novel material that would offer shielding against electromagnetic interference (EMI). To achieve this aim it was necessary to characterise and select suitable materials, carry out ink jetting trials, modify the materials accordingly to improve the printability and assess post jetting conditions including drying and curing behaviour. Particle size, surface tension, and viscosity measurements were made for a series of elastomer latex materials and carboxylated styrene butadiene rubber (XSBR) latex was identified as the most suitable. Latex ink optimisation included dilution with water and the addition of a humectant, triethylene glycol monomethyl ether (TGME), which delayed drying and reduced nozzle blocking. The surface energy was measured for arrange of potential substrates and PET was identified as the most suitable, due to its relatively high surface energy which allowed for an ideal level of wetting and spreading. Analysis of the cross-sectional profiles of the printed samples by white light interferometry showed that drying during printing was an important issue for the latex ink. Ink jetting of a composite material with control of filler distribution was shown to be feasible when ten layers of conductive carbon black ink were deposited alternately between ten layers of XSBR ink. Printing was successfully carried out with a latex combined with a resorcinol resin which was subsequently cured, indicating that it should be possible to 3D print a thermoset elastomer in this way. Conductive carbon black was printed in various patterns onto PET sheet and the dielectric properties measured. Results indicated that at very low carbon contents, the printed patterns could provide EMI shielding. The research has shown that it is feasible to create a cured 3D elastomeric object containing filler with a controlled distribution that is capable of providing EMI shielding.
38

Improving and Expanding the Capabilities of the Poly-Picosatellite Orbital Deployer

Pignatelli, David 01 October 2014 (has links)
The Poly-Picosatellite Orbital Deployer (P-POD) has undergone a series of revisions over the years. The latest revision, described in this Master’s Thesis, incorporates new capabilities like EMI shielding, an inert gas purge system, and an electrical interface to the CubeSats after they are integrated into the P-POD. Additionally, some mass reduction modifications are made to the P-POD, while its overall strength is increased. The P-POD inert gas purge system successfully flew, on a previous revision P-POD. The P-POD components are analyzed to a set of dynamic loads for qualification, and successfully undergoes random vibration qualification testing. The P-POD encounters some problems in thermal vacuum cycling qualification and EMI testing, but there is evidence that the issues can be mitigated. A path forward is laid out to complete both sets of testing.
39

Behavioral EMI-Models of Switched Power Converters

Bishnoi, Hemant 05 November 2013 (has links)
Measurement-based behavioral electromagnetic interference (EMI) models have been shown earlier to accurately capture the EMI behavior of switched power converters. These models are compact, linear, and run in frequency domain, enabling faster and more stable simulations compared to the detailed lumped circuit models. So far, the behavioral EMI modeling techniques are developed and applied to the converter's input side only. The resulting models are therefore referred to as "terminated EMI models". Under the condition that the output side of the converter remains fixed, these models can predict the input side EMI for any change in the impedance of the input side network. However, any change at the output side would require re-extraction of the behavioral model. Thus the terminated EMI models are incapable of predicting the change in the input side EMI due to changes at the output side of the converter or vice versa. The above mentioned limitation has been overcome by an "un-terminated EMI model" proposed in this dissertation. Un-terminated EMI models are developed here to predict both the common-mode (CM) and the differential (DM) noise currents at the input and the output sides of a motor-drive system. The modeling procedure itself has been simplified and now requires fewer measurements and results in less noise in the identified model parameters. Both CM and DM models are then combined to predict the total noise in the motor drive system. All models are validated by experiments and their limitations identified. A significant portion of this dissertation is then devoted to the application of behavioral EMI models in the design of EMI filters. Comprehensive design procedures are developed for both DM and CM filters in a motor-drive system. The filters designed using the proposed methods are experimentally shown to satisfy the DO-160 conducted emissions standards. The dissertation ends with a summary of contributions, limitations, and some future research directions. / Ph. D.
40

High Power Inverter EMI Characterization and Improvement by Auxiliary Resonant Snubber Inverter

Tang, Yuqing 28 January 1999 (has links)
Electromagnetic interference (EMI) is a major concern in inverter motor drive systems. The sources of EMI have been commonly identified as high switching dv/dt and di/dt rates interacting with inverter parasitic components. The reduction of parasitic components relies on highly integrated circuit layout and packaging. This is the way to deal with noise path. On the other hand, switching dv/dt and di/dt can be potentially reduced by soft-switching techniques; thus the intensity of noise source is reduced. In this paper, the relation between the dv/dt di/dt and the EMI generation are discussed. The EMI sources of a hard-switching single-phase PWM inverter are identified and measured with separation of common-mode and differential-mode noises. The noise reduction in an auxiliary resonant snubber inverter (RSI) is presented. The observation of voltage ringing and current ringing and the methods to suppress these ringing in the implementation of RSI are also discussed. The test condition and circuit layout are described as the basis of the study. And the experimental EMI spectra of both hard- and soft-switching inverter are compared. The effectiveness and limitation of the EMI reduction of the ZVT-RSI are also discussed and concluded. The control interface circuit and gate driver design are described in the appendix. The implementation of variable charging time control of the resonant inductor current is also explained in the appendix. / Master of Science

Page generated in 0.0257 seconds