Spelling suggestions: "subject:"absorptionsspektroskopie.""
21 |
Charakterisierung reaktiver Prozesse bei der katodischen VakuumbogenverdampfungKuehn, Michael 25 November 1997 (has links)
In der vorliegenden Arbeit werden die waehrend der reaktiven
Vakuumbogenverdampfung ablaufenden Prozesse untersucht und eine modellmaessige
Beschreibung des Gesamtprozesses entwickelt. Das Verfahren wird zur
Herstellung von duennen Schichten zahlreicher chemischer Verbindungen,
insbesondere von Hartstoffschichten auf der Basis der Karbide und Nitride der
Uebergangsmetalle, genutzt. Entsprechend wurden in dieser Arbeit als
Katodenmaterial Titan, Chrom und Zirkonium eingesetzt, als Reaktivgase
Stickstoff und Methan.
Zunaechst werden einige Grundlagen der Vakuumbogenverdampfung dargestellt,
die fuer die Bearbeitung des Themas wesentlich sind. Anschliessend wird der
Aufbau der fuer die Experimente genutzten Beschichtungsapparatur beschrieben.
Im Hauptteil der Arbeit wird zuerst auf experimentellem Wege die
Materialbilanz der Entladung bei Variation des Reaktivgasdruckes analysiert.
Die Generation an Metalldampfplasma wird ueber die Katodenerosionsrate
bestimmt, wobei sich beim Betrieb mit Stickstoff als Reaktivgas signifikante
Unterschiede in der Druckabhaengigkeit der Katodenerosionsrate µ zwischen
Titan bzw. Zirkonium einerseits und Chrom andererseits zeigen. Die Hypothese,
dass hier die Ausbildung einer Verbindungsschicht an der Katodenoberflaeche
den Erosionsprozess beeinflusst, wurde sowohl durch RBS-Messungen als auch
durch Vergleichsexperimente mit einer massiven TiN-Katode bestaetigt. Weitere
Auswirkungen derartiger Oberflaechenbedeckungen auf die Dynamik des
Katodenbrennfleckes wurden durch Videountersuchungen am Beispiel Ti+N_2
nachgewiesen. Die Konsumtion des Reaktivgases waehrend der Entladung wird
anhand der Gasfluss-Druck-Charakteristiken untersucht und das je nach
Katodenmaterial unterschiedliche Gettervermoegen diskutiert. Direkte
Informationen ueber den Stickstoffeinbau in die Schichten in Abhaengigkeit
vom Reaktivgasdruck werden aus RBS-Untersuchungen an entsprechenden
Probenserien gewonnen. Analoge Untersuchungen mit Methan als Reaktivgas
fuehrten zu prinzipiell aehnlichen Resultaten.
Mit den gewonnenen experimentellen Daten als Grundlage wurde ein Modell
entwickelt, das die Materialbilanz der Vakuumbogenverdampfung mathematisch
beschreibt. Hier wurden, ausgehend von einem fuer das reaktive
Magnetronsputtern aufgestellten Modell, die Besonderheiten der stark
lokalisierten Metalldampfgeneration bei der Vakuumbogenverdampfung
beruecksichtigt. Die erreichte Uebereinstimmung der Modellkurven mit den
experimentellen Daten zeigt, dass mit der Modellierung wesentliche
Mechanismen bei der reaktiven Vakuumbogenverdampfung richtig erfasst wurden.
Aus den Ergebnissen folgt, dass die Erzeugung von reaktionsfaehigen
Stickstoffspezies an die Katodenerosion gekoppelt ist: erstens ueber die
Erosion nitridbedeckter Oberflaechenbereiche und zweitens ueber die
Wechselwirkung des Metalldampfplasmas mit dem Reaktivgas.
Diese Wechselwirkungsprozesse werden durch Untersuchungen mit elektrischen
Sondenmessungen sowie mittels optischer Emissionsspektroskopie (OES) naeher
charakterisiert. Als wesentliches Ergebnis zeigt sich dabei, dass trotz der
Unterschiede hinsichtlich des Verhaltens an der Katode bei Ti- bzw.
Cr-Entladungen in Stickstoff Anregungs- und Ionisationsgrad des Reaktivgases
praktisch gleich sind. Im Zusammenhang damit wird die Rolle von
Ladungstransfer- und Anregungsprozessen infolge von Stoessen schneller
Ionen mit Molekuelen und Neutralatomen diskutiert.
|
22 |
ECR-Plasmadiagnostik im System Ar-H2-N2-TMS und Charakterisierung der entstehenden SiCxNy:H-SchichtenDani, Ines 06 May 2002 (has links)
Bibliographische Beschreibung und Referat
Dani, Ines
"ECR-Plasmadiagnostik im System Ar-H2-N2-TMS und Charakterisierung der entstehenden SiCxNy:H-Schichten"
Technische Universität Chemnitz, Institut für Physik, Dissertation, 2002
(102 Seiten, 62 Abbildungen, 17 Tabellen, 74 Literaturstellen)
In den letzten Jahren wurde im Rahmen der Entwicklung neuartiger Hartstoffschichten verstärkt das System Si-C-N untersucht. Das am häufigsten zur Herstellung genutzte Verfahren ist die chemische Gasphasenabscheidung (CVD). Plasmagestützte CVD-Verfahren bieten die Möglichkeit, auch bei geringen Substrattemperaturen Schichten mit guten mechanischen Eigenschaften herzustellen. Der Abscheideprozess ist jedoch sehr komplex und bis heute nicht vollständig verstanden. Eine Optimierung erfolgt daher meist nach dem trial-and-error-Prinzip, was aber durch die Vielzahl an frei wählbaren Parametern sehr zeitaufwendig ist. Der Zusammenhang zwischen äußeren, regelbaren Parametern und inneren Entladungsparametern ist die Grundlage für ein besseres Verständnis der Plasmachemie und der Schichtwachstumsprozesse in einem molekularem Nichtgleichgewichtsplasma. Da beschichtende Plasmen besonders hohe Anforderungen an die verwendeten Diagnostikverfahren stellen, ist es in den meisten Fällen nicht möglich, die primär für die Schichtbildung interessanten Teilchen zu beobachten. Nur aus der Kombination sich ergänzender Verfahren können elementare Prozesse der Schichtbildung bestimmt werden. Aus ihrer Kenntnis ergibt sich die Möglichkeit einer gezielten Beeinflussung von Schichteigenschaften auf der Basis physikalisch relevanter Größen.
In dieser Arbeit wird die Herstellung von amorphen SiCxNy:H-Schichten mit einem ECR-plasmagestützten CVD-Verfahren untersucht. Als Precursor wird dabei Tetramethylsilan (TMS) genutzt. Das vorrangig zur Bestimmung von Teilchenzahldichten eingesetzte Verfahren ist die optische Emissionsspektroskopie. Eine Weiterentwicklung der Aktinometrie ermöglicht die Bestimmung absoluter Teilchenzahldichten unter Beschichtungsbedingungen. Unter Zugrundelegung des Korona-Modells und der Nutzung publizierter Ratenkoeffizienten werden die Grundzustandsdichten von atomarem Wasserstoff, CH und Silicium berechnet. Die Überprüfung der Methode anhand von Argon zeigt eine ausgezeichnete Übereinstimmung zwischen den optisch bestimmten und den gaskinetisch berechneten Teilchenzahldichten. Die Verfälschung der berechneten Teilchenzahldichten durch dissoziative Anregung von H durch H2 ist in einem Plasma mit H2-Zugabe nicht zu vernachlässigen. Dagegen ist der Einfluss dissoziativer Anregung aus TMS auf H, CH und Si sehr gering. Die Teilchenzahldichten von Si und CH sind bei konstantem TMS-Fluss von der Elektronendichte abhängig, bei steigendem TMS-Fluss kommt es in Abhängigkeit von der jeweiligen Elektronendichte zu einer Sättigung. Die Teilchenzahldichte von atomarem Wasserstoff steigt linear mit dem TMS-Fluss. Eine Abscheidung mit hoher Rate ist nur durch Si-haltige Precursorfragmente mit kleinen Massenzahlen möglich. Als Maß für die Entstehung dieser Fragmente können die Teilchenzahldichten von Si bzw. CH genutzt werden.
|
23 |
Untersuchung der lokalen Anregung einer gepulsten Magnetronentladung mittels optischer Emissionsspektroskopie und Abel-InversionLiebig, Bernd 27 November 2008 (has links)
Mittels optischer Emissionsspektroskopie (OES) kann die plasmainduzierte Emission und damit die Anregung der Gasteilchen im Plasma untersucht werden. Ein wesentlicher Vorteil dieser Untersuchungsmethode ist die Tatsache, dass das Plasma bei der Messung nicht beeinflusst wird. Dagegen ist die räumliche Auflösung der emittierten Intensität sehr schwierig. So geht die Tiefeninformation bei der Messung verloren, was einen wesentlichen Nachteil der OES darstellt. In der vorliegenden Arbeit wurde deshalb die Zylindersymmetrie der untersuchten Magnetronentladung ausgenutzt und mittels Abel-Inversion räumlich aufgelöste Informationen zur Anregung des Plasmas zugänglich gemacht. Es werden die experimentellen Aufbauten sowie die verwendeten Algorithmen zur Auswertung beschrieben und charakterisiert. Als Modellsystem diente die Abscheidung von Titanoxid mittels reaktiver Magnetronzerstäubung. Die untersuchte Magnetronentladung wurde hinsichtlich der örtlich emittierten Intensität verschiedener Spektrallinien des Prozessgases Argon sowohl im Gleichspannungsbetrieb als auch im gepulsten Betrieb charakterisiert. / The excitation of gas particles in a plasma can be examined by optical emission spectroscopy (OES). During the measurement the plasma is not influenced, which is a significant advantage of this technique. On the other hand the spatial resolution is quite poor. Especially the depth resolution gets lost when measuring the integrated intensity along the line of sight. That's why in the present work the rotational symmetry of the examined magnetron discharge was used to calculate spatial resolved information about the gas particles' excitation by using Abel inversion. The experimental settings and the algorithms for analysis are described and characterized. Spatially resolved emission of the process gas argon during the deposition of titanium oxide by reactive magnetron sputtering was studied in dc as well as in pulsed dc mode.
|
24 |
Plasmadiagnostische Charakterisierung der Magnetronentladung zur c-BN-AbscheidungWelzel, Thomas 14 February 1999 (has links) (PDF)
Die Abscheidung dünner Schichten mit Hilfe von plasmagestützten Verfahren hat in den letzten Jahrzehnten als Technik zur Oberflächenveredelung und zur Herstellung funktioneller Schichten stark an Bedeutung gewonnen. Die Nichtgleichgewichtsbedingungen im Entladungsraum und an der Oberfläche der wachsenden Schicht ermöglichen die Synthese neuartiger Materialien. Dazu gehören Hartstoffschichten, unter denen das kubische Bornitrid derzeit Gegenstand intensiver weltweiter Forschung ist. Der Abscheideprozeß ist außerordentlich komplex und daher bis heute nicht im Detail verstanden. Eine Optimierung erfolgt daher häufig über zeitaufwendige Trial-and-Error-Methoden. Mit Hilfe der Plasmadiagnostik sind elementare Prozesse und Teilchen bestimmbar, die Aussagen über die Teilchenströme am Ort des Schichtwachstums gestatten. Damit ergibt sich die Möglichkeit der gezielten Beeinflussung und Steuerung der Schichtabscheidung.
In der vorliegenden Arbeit wird die zur Herstellung von kubischen Bornitridschichten genutzte Magnetronentladung untersucht. Dabei werden mit der LANGMUIR-Sonde, der optischen Emissionsspektroskopie und der laserinduzierten Fluoreszenz drei plasmadiagnsotische Verfahren kombiniert eingesetzt. Basis der Charakterisierung des Abscheidprozesses sind Untersuchungen zu elementaren Vorgängen in der Entladung. Dabei kann ein starker Einfluß des verwendeten Arbeitsgases (Ar + N2) auf die Anregung und Ionisation der abgestäubten Boratome beobachtet werden. Weiterhin wird ein Einfluß metastabil angeregter Argonatome auf die Anregung der Stickstoffmoleküle und höher angeregter Argonzustände festgestellt. Räumlich aufgelöste LANGMUIR-Sondenmessungen zeigen eine starke Erhöhung und Inhomogenität der Ladungsträgerdichte im Bereich vor dem Substrat, die auf ein unbalanciertes Magnetron schließen lassen. Aufbauend auf den plasmadiagnostischen Messungen wird die Abscheidung der Bornitridschichten beschrieben. Dabei wird besonders auf die Teilchenströme, die auf das Substrat treffen, eingegangen. Aus dem Ionenstrom und dem Strom der Boratome auf das Substrat erfolgt die Einführung eines Skalierungsparameters, welcher die Bildung der kubischen Phase des Bornitrids beschreibt. Seine Abhängigkeit von externen Prozeßparametern wird untersucht.
|
25 |
Entwicklung, Charakterisierung und Anwendungen nichtthermischer Luft-Plasmajets / Development, characterization and applications of non-thermal air plasma jetsMeiners, Annette 21 October 2011 (has links)
No description available.
|
26 |
Local Structural and Optical Characterization of Photonic Crystals by Back Focal Plane Imaging and SpectroscopyWagner, Rebecca 12 March 2015 (has links)
This thesis establishes methods to locally and effciently detect the fluorescence from photonic crystals (PCs) in dependence on wavelength and direction. These are applied to three dimensional (3D) PCs grown by vertical deposition of polystyrene beads. The experiments allow conclusions about the local 3D structure of a sample, about defects in its volume and about spatial structural variations. They thus provide more information than typical spectroscopy measurements that average over large areas and methods that only image the surface structure like scanning electron microscopy.
A focused laser is used to excite emitters in the sample only locally. The fluorescence is then collected by a microscope objective. Every point in this objective’s back focal plane (BFP) corresponds to a certain direction. This property is utilized in two ways.
When observing a small spectral range of the emission in the BFP, stop bands appear as intensity minima since they hinder the emission into the corresponding directions. Thus, back focal plane imaging (BFPI) allows to visualize stop bands of many directions at the same time. The detected patterns permit to find the in-plane and out-of-plane orientation of the PC lattice and to conclude on the presence of stacking faults. Spatial variations of the structure are observed on a length scale of a few micrometers. The depth of the stop band is reduced at sample positions, where structural changes occur.
In back focal plane spectroscopy (BFPS), a slit selects light from certain points in the BFP, which is spectrally dispersed subsequently. This allows to record spectra from many directions simultaneously. From them, a lattice compression along the sample normal of about 4% is found. Small deformations are also observed for other directions. Scattering at defects redistributes the emission. This increases the detected intensity compared to homogeneous media at some stop band edges in a broad spectral range for samples thicker than the scattering mean free path. Thinner samples show a narrow enhancement due to an increase in the fractional density of optical states and thus in emission.
BFPI and BFPS are also used to observe the growth of PCs from drying droplets. The experiments show that the beads initially form a non-close packed lattice. This causes stress as the lattice constant decreases, which is released by cracking of the PCs.
|
27 |
Untersuchungen einer gepulsten Magnetronentladung bei der Abscheidung von Oxidschichten mittels optischer Emissionsspektroskopie und elektrischer SondenWelzel, Stefan 29 October 2004 (has links)
Investigations on pulsed reactive magnetron sputtering processes for the deposition of thin oxide films are presented by means of time-resolved and time-integrated measurements. The pulsed process can be successfully described in terms of a model of Berg et al. for reactive sputtering processes. Time-resolved Langmuir double probe measurements are confirmed using time-resolved optical emission spectroscopy. Combining the results leads to an insight into elementary processes governing the discharge. / Mit Hilfe zeitlaufgelöster und zeitlich mittelnder Methoden wird eine gepulste Magnetronentladung zur reaktiven Abscheidung von Oxidschichten untersucht. Das Modell von Berg et al. zur Beschreibung des Abscheideprozesses lässt sich dabei erfolgreich auf die reaktive Abscheidung mit einem gepulsten Prozess anwenden. Mittels zeitaufgelöster optischer Emissionsspektroskopie können die Ergebnisse zeitaufgelöster Langmuir-Doppelsondenmessungen bestätigt werden. In Kombination ermöglichen diese Verfahren die Untersuchung von Elementarprozessen in der Entladung.
|
28 |
Plasmadiagnostische Charakterisierung der Magnetronentladung zur c-BN-AbscheidungWelzel, Thomas 15 December 1998 (has links)
Die Abscheidung dünner Schichten mit Hilfe von plasmagestützten Verfahren hat in den letzten Jahrzehnten als Technik zur Oberflächenveredelung und zur Herstellung funktioneller Schichten stark an Bedeutung gewonnen. Die Nichtgleichgewichtsbedingungen im Entladungsraum und an der Oberfläche der wachsenden Schicht ermöglichen die Synthese neuartiger Materialien. Dazu gehören Hartstoffschichten, unter denen das kubische Bornitrid derzeit Gegenstand intensiver weltweiter Forschung ist. Der Abscheideprozeß ist außerordentlich komplex und daher bis heute nicht im Detail verstanden. Eine Optimierung erfolgt daher häufig über zeitaufwendige Trial-and-Error-Methoden. Mit Hilfe der Plasmadiagnostik sind elementare Prozesse und Teilchen bestimmbar, die Aussagen über die Teilchenströme am Ort des Schichtwachstums gestatten. Damit ergibt sich die Möglichkeit der gezielten Beeinflussung und Steuerung der Schichtabscheidung.
In der vorliegenden Arbeit wird die zur Herstellung von kubischen Bornitridschichten genutzte Magnetronentladung untersucht. Dabei werden mit der LANGMUIR-Sonde, der optischen Emissionsspektroskopie und der laserinduzierten Fluoreszenz drei plasmadiagnsotische Verfahren kombiniert eingesetzt. Basis der Charakterisierung des Abscheidprozesses sind Untersuchungen zu elementaren Vorgängen in der Entladung. Dabei kann ein starker Einfluß des verwendeten Arbeitsgases (Ar + N2) auf die Anregung und Ionisation der abgestäubten Boratome beobachtet werden. Weiterhin wird ein Einfluß metastabil angeregter Argonatome auf die Anregung der Stickstoffmoleküle und höher angeregter Argonzustände festgestellt. Räumlich aufgelöste LANGMUIR-Sondenmessungen zeigen eine starke Erhöhung und Inhomogenität der Ladungsträgerdichte im Bereich vor dem Substrat, die auf ein unbalanciertes Magnetron schließen lassen. Aufbauend auf den plasmadiagnostischen Messungen wird die Abscheidung der Bornitridschichten beschrieben. Dabei wird besonders auf die Teilchenströme, die auf das Substrat treffen, eingegangen. Aus dem Ionenstrom und dem Strom der Boratome auf das Substrat erfolgt die Einführung eines Skalierungsparameters, welcher die Bildung der kubischen Phase des Bornitrids beschreibt. Seine Abhängigkeit von externen Prozeßparametern wird untersucht.
|
29 |
Hochratesynthese von Hartstoffschichten auf Siliciumbasis mittels thermischer PlasmenWank, Andreas 04 April 2002 (has links)
Mittels thermischer Plasmen werden Hartstoffschichten auf der Basis von Silicium - SiC, Si3N4 sowie ternäre Si-C-N Verbindungen, aus flüssigen Single Precursoren synthetisiert. Durch die hohen Abscheideraten von bis zu 1.500 µm/h wird das hohe Potenzial der Beschichtungswerkstoffe für den Schutz von Bauteilen, die starken Verschleiß- und Korrosionsbeanspruchungen insbesondere bei hohen Temperaturen ausgesetzt sind, bei wirtschaftlich interessanten Prozesszeiten nutzbar. Der Einfluss der Precursorstruktur und der Prozessführung auf die Mikrostruktur der Schichten sowie die Abscheiderate wird systematisch erarbeitet. Zur Schichtcharakterisierung kommen Lichtmikroskopie, REM, EDX, XRD und im Fall röntgenamorpher Schichten FTIR zum Einsatz. Das Verwenden unterschiedlicher thermischer Plasmen erlaubt das Einstellen eines weiten Prozessfeldes. Mit Hilfe von Enthalpiesonden Messungen werden die Einflüsse der Maschinenparameter auf den Prozesszustand untersucht. Die Ergebnisse sind in einer Prozess - Gefügekarte zusammengefasst. Da das Gefüge der Schichten die Eigenschaften im Einsatz bedingt, bieten diese Arbeiten die Grundlage für das reproduzierbare Herstellen von Schichten mit angepassten Eigenschaften. Über die emissionsspektroskopischen Analysen zu den plasmachemischen Reaktionen gelingt es, die Schichtabscheidemechanismen in Abhängigkeit von den Prozessparametern zu klären und einen Ansatz für eine online Prozesskontrolle zu erarbeiten.
|
30 |
Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Ströme einfach geladener AluminiumionenWeichsel, Tim 12 July 2016 (has links) (PDF)
Es wurde eine Elektron-Zyklotron-Resonanz-Ionenquelle mit einer Mikrowellenfrequenz von2,45 GHz für die Produktion intensiver Ströme einfach geladener Metallionen entwickelt. Deren Beladung mit Metalldampf erfolgt über ein integriertes zylindrisches Sputtermagnetron, welches speziell für diese Aufgabe entworfen wurde. Die entstandene MECRIS, engl. Magnetron Electron Cyclotron Resonance Ion Source, vereinigt die ECR-Ionenquellentechnologie mit der Magnetron-Sputtertechnologie auf bisher einzigartige Weise und verkörpert so ein neues Metallionen-Quellenkonzept. Unter Verwendung eines Al-Sputtertargets konnte die Funktionsfähigkeit der MECRIS an dem Beispiel der Al+-Ionenerzeugung erfolgreich demonstriert werden. Der extrahierbare Al+-Ionenstrom wurde über einen neuartigen, im Rahmen der Arbeit entwickelten, Hochstrom-Faraday-Cup gemessen.
Auf Basis numerischer Berechnungen wurde das Gesamtmagnetfeld so ausgelegt, dass die Permanentmagnete des Magnetrons und die Spulen der ECR-Quelle eine Minimum-B-Struktur erzeugen, welche einen effektiven Elektroneneinschluss nach dem magnetischen Spiegelprinzip ermöglicht. Gleichzeitig wird durch eine geschlossene ECR-Fläche, mit der magnetischen Resonanzflussdichte von 87,5 mT, eine optimale Heizung der Plasmaelektronen realisiert. Die mithilfe einer Doppel-Langmuir-Sonde gemessene Elektronentemperatur steigt in Richtung Quellenmitte an und beträgt maximal 11 eV. Geheizte Elektronen erlauben die effiziente Stoßionisation der Al-Atome, welche mit einer Rate von über 1E18 Al-Atome/s eingespeist werden und eine höchstmögliche Dichte von 2E10 1/cm³ aufweisen.
Die MECRIS erzeugt hauptsächlich einfach geladene Ionen des gesputterten Materials (Al+) und des Prozessgases (Ar+). Der Al+-Ionenextraktionsstrom ist über die Erhöhung der Prozessparameter Sputterleistung, Mikrowellenleistung, Spulenstrom und Extraktionsspannung um eine Größenordnung bis auf maximal 135 μA steigerbar, was einer Stromdichte von 270 μA/cm² über die Extraktionsfläche von rund 0,5 cm² entspricht. Dies steht im Einklang mit der Prozessparameterabhängigkeit der anhand der Sonde bestimmten Plasmadichte, welche einen größtmöglichen Wert von etwa 6E11 1/cm³ annimmt. Das Verhältnis von extrahiertem Al+- zu Ar+-Ionenstrom kann durch Optimierung der Prozessparameter von 0,3 auf maximal 2 angehoben werden.
Sondenmessungen des entsprechenden Ionendichteverhältnisses bestätigen diesen Sachverhalt. Um möglichst große Extraktionsströme und Al+/Ar+-Verhältnisse zu generieren, muss die ECR-Fläche demnach in dem Bereich der höchsten Al-Atomdichte in der Targetebene lokalisiert sein. Gegenüber dem alleinigen Magnetronplasma (ohne Mikrowelleneinspeisung) können mit dem MECRIS-Plasma um bis zu 140 % höhere Al+-Ionenströme produziert werden. Aus Sondenuntersuchungen geht hervor, dass dies eine Folge der um etwa eine Größenordnung gesteigerten Plasmadichte und der um rund 7 eV größeren Elektronentemperatur des MECRIS-Plasmas ist.
Das MECRIS-Plasma wurde außerdem mittels optischer Emissionsspektroskopie charakterisiert und durch ein globales sowie ein zweidimensionales Modell simuliert. Die gewonnenen Prozessparameterabhängigkeiten der Plasmadichte, Elektronentemperatur sowie Al+- und Ar+-Ionendichte stimmen mit den Sondenergebnissen überein. Teilweise treten jedoch Absolutwertunterschiede von bis zu zwei Größenordnungen auf.
Die Erhöhung der Sputterleistung und Extraktionsspannung über die derzeitigen Grenzen von 10 kW bzw. 30 kV sowie die Optimierung der Extraktionseinheit hinsichtlich minimaler Elektrodenblindströme bietet das Potential, den Al+-Ionenstrom bis in den mA-Bereich zu steigern. / An electron cyclotron resonance ion source working at a microwave frequency of 2.45 GHz has been developed in order to generate an intense current of singly charged metal ions. It is loaded with metal vapor by an integrated cylindrical sputter magnetron, which was especially designed for this purpose. The MECRIS (Magnetron Electron Cyclotron Resonance Ion Source) merges ECR ion source technology with sputter magnetron technology in a unique manner representing a new metal ion source concept. By using an Al sputter target, the efficiency of the MECRIS was demonstrated successfully for the example of Al+ ion production. The extractable ion current was measured by a newly developed high-current Faraday cup.
On the basis of numerical modeling, the total magnetic field was set in a way that the permanent magnets of the magnetron and the coils of the ECR source are forming a minimum-B-structure, providing an effective electron trap by the magnetic mirror principle.
Simultaneously, optimal electron heating is achieved by a closed ECR-surface at resonant magnetic flux density of 87.5 mT. Electron temperature increases towards the center of the source to a maximum of about 11 eV and was measured by a double Langmuir probe. Due to the heated electron population, efficient electron impact ionization of the Al atoms is accomplished. Al atoms are injected with a rate of more than 1E18 Al-atoms/s resulting in a maximum Al atom density of 2E10 1/cm³.
The MECRIS produces mainly singly charged ions of the sputtered material (Al+) and the process gas (Ar+). The Al+ ion extraction current is elevated by one order of magnitude to a maximum of 135 μA by increasing the process parameters sputter magnetron power, microwave power, coil current, and acceleration voltage. Related to the extraction area of about 0.5 cm², the highest possible Al+ ion current density is 270 μA/cm². A corresponding process parameter dependency was found for the plasma density showing a peak value of about 6E11 1/cm³, which was deduced from probe measurements. The ratio of the extracted Al+ ion current to the Ar+ ion current can be enhanced from 0.3 to a maximum of 2 by optimization of the process parameters. This was confirmed by probe investigations of the appropriate ion density ratio. In conclusion, the ECR-surface needs to be located in the area of the highest Al atom density in the target plane in order to improve the extraction current and Al+/Ar+ ratio.
The MECRIS plasma produces an Al+ ion current, which is up to 140 % higher compared to that of the sole sputter magnetron plasma (without microwave injection). As revealed by probe measurements, this effect is due to the higher plasma density and electron temperature of the MECRIS plasma, leading to a difference of one order of magnitude and 7 eV, respectively.
Additionally, the MECRIS plasma has been characterized by optical emission spectroscopy and simulated by a global and a two-dimensional model. Retrieved process parameter dependencies of plasma density, electron temperature, Al+ ion density, and Ar+ ion density coincide with probe findings. Although a discrepancy of the absolute values of partly up to two orders of magnitude is evident.
Potentially, the Al+ ion current can be enhanced to the mA-region by optimizing the ion extraction system for minimal idle electrode currents and by rising sputter magnetron power as well as acceleration voltage above the actual limits of 10 kW and 30 kV, respectively.
|
Page generated in 0.7892 seconds