• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 17
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 16
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Enzymes as catalysts in synthesis of enantiomerically pure building blocks : secondary alcohols bearing two vicinal stereocenters

Liu, Rong January 2005 (has links)
Enzymes as tools in organic synthesis have provided enormous advantages. This thesis deals with the applications of enzymes in the kinetic resolutions of racemic compounds. The stereochemistry of chiral compounds and the kinetics of α/β hydrolase lipases are presented. From a practical point of view, the handling of a large number of parameters that influences the kinetic resolutions, especially enantioselectivity (E-value) are systematically described. A variety of approaches employed for raising the yields to over 50% are additionally discussed. Methods for the preparation of synthetically useful chiral building blocks were developed in this thesis. Thus, resolution of secondary alcohols bearing two vicinal stereocentres are studied. These building blocks can serve as starting materials for the synthesis of various enantiomerically pure compounds for agrochemistry, pharmaceuticals, chemical industry, and particularly for the total synthesis of pheromones. Racemic 3-substitued 2-hydroxybutane derivatives were produced in fairly high diastereomeric purities by a variety of chemical approaches, such as epimerization, metal-catalysed asymmetric addition etc. Kinetic resolution of these racemates was achieved by enzyme-catalysed reactions. Two lipases, Candida antarctica lipase B and Pseudomonas cepacia lipase were found to be useful in acylations as well as hydrolyses. In the biotransformations studied, the presence and nature of the second vicinal stereocentre in the chiral secondary alcohols investigated seemed to be important, e.g. in terms of the efficiencies of sequential kinetic resolutions, and altering the selectivities as well. / QC 20101020
32

Rhodium and Palladium Catalysis in the Synthesis of Carbo- and Heterocycles

Panteleev, Jane 18 December 2012 (has links)
This thesis describes the development of transition metal catalyzed transformations towards the synthesis of stereochemically rich motifs and heterocycles. The main themes present throughout this thesis are rhodium-catalysis in reactions of boronic acids with alkenes and alkynes, the use of alkynes as a key motif in the synthesis of heterocycles, and the use of domino and one-pot processes to effect high efficiency in multistep transformations. In Chapter 1, a rhodium-catalyzed desymmetrization of diazabicyclic alkenes with boronic acids is discussed. In this work a chemodivergent and enantioselective process for the synthesis of substituted cyclopentenes and cyclopentanes is developed. Both the chemo- and the enantioselectivity of the reaction are shown to be highly dependent on the phosphine ligand structure. The observed reactivity of rhodium is further applied to a domino reaction to synthesize highly substituted benzofuranones. In Chapter 2, the reactivity of boronic acids and alkynes under rhodium catalysis is exploited as a key step to access polycyclic motifs. In the first part of this chapter the development of a domino process using both rhodium and palladium catalysis is described. Detailed mechanistic investigations allow some insight into the interactions between two catalysts. In the last part of this chapter, preliminary experiments in the application of multimetallic catalysis in the synthesis of azadibenzoxepines are discussed. Chapter 3 summarizes work on the arylation of propargylic alcohols with boronic acids under rhodium catalysis. This reaction is shown to proceed with high regioselectivity and can be conducted under mild conditions. The resulting allylic alcohols are shown to be versatile motifs and are applied in a synthesis of indenes and quinolines. In the final chapter of this thesis, iodotriazoles are explored as key intermediates in the synthesis of fused triazole-containing heterocycles. Palladium-catalyzed cyclization, either through C-H functionalization or through Heck coupling, is achieved. Furthermore, it is shown that the copper-catalyzed azide-alkyne cycloaddition and palladium-catalyzed C-H arylation can be combined into a one-pot process.
33

Enzymes as catalysts in synthesis of enantiomerically pure building blocks : secondary alcohols bearing two vicinal stereocenters

Liu, Rong January 2005 (has links)
<p>Enzymes as tools in organic synthesis have provided enormous advantages. This thesis deals with the applications of enzymes in the kinetic resolutions of racemic compounds. The stereochemistry of chiral compounds and the kinetics of α/β hydrolase lipases are presented. From a practical point of view, the handling of a large number of parameters that influences the kinetic resolutions, especially enantioselectivity (E-value) are systematically described. A variety of approaches employed for raising the yields to over 50% are additionally discussed.</p><p>Methods for the preparation of synthetically useful chiral building blocks were developed in this thesis. Thus, resolution of secondary alcohols bearing two vicinal stereocentres are studied. These building blocks can serve as starting materials for the synthesis of various enantiomerically pure compounds for agrochemistry, pharmaceuticals, chemical industry, and particularly for the total synthesis of pheromones.</p><p>Racemic 3-substitued 2-hydroxybutane derivatives were produced in fairly high diastereomeric purities by a variety of chemical approaches, such as epimerization, metal-catalysed asymmetric addition etc. Kinetic resolution of these racemates was achieved by enzyme-catalysed reactions. Two lipases, Candida antarctica lipase B and Pseudomonas cepacia lipase were found to be useful in acylations as well as hydrolyses. In the biotransformations studied, the presence and nature of the second vicinal stereocentre in the chiral secondary alcohols investigated seemed to be important, e.g. in terms of the efficiencies of sequential kinetic resolutions, and altering the selectivities as well.</p>
34

Chiral Phosphoric Acid-Catalyzed Acetalization and Iso-Pictet-Spengler Reactions

Kaplan, Matthew Jon 01 January 2013 (has links)
The development of novel asymmetric reaction methodologies has been invaluable in both the academic and industrial world. In just 15 years, organocatalysis has provided a new means of developing asymmetric reaction methodologies using catalysts that are environmentally benign, relatively inexpensive, bench stable, and non-toxic. One development in organocatalysis that is important to our group in particular is chiral phosphoric acid-catalysis. BINOL-derived and VAPOL-derived phosphoric acids have proven to be excellent catalysts for a number of reactions. The two projects I will discuss my efforts on are acetalization and iso-Pictet-Spengler reactions. These were projects that I performed during my first two years as a graduate student. The acetalization was particularly fascinating as only one literature report existed for the catalytic asymmetric variant of a reaction that makes such important compounds--O,O-acetals. The acetalization reaction proved to be a formidable opponent, and to this date no research report has been published documenting the intra-, or intermolecular catalytic asymmetric acetalization of vinyl ethers or the intermolecular catalytic asymmetric transacetalization. The iso-Pictet-Spengler reaction is one that is interesting because exhaustive research has been conducted into the development of catalytic asymmetric Pictet-Spengler reactions, but at the time of my research, not a single catalytic asymmetric method existed to synthesize tetrahydro-γ-carbolines, the product of the iso-Pictet-Spengler reaction. Structurally, the tetrahydro-γ-carboline is isomeric to the tetrahydro-β-carboline, the product of the Pictet-Spengler reaction. They differ only in the position of nitrogen in the annulated product. This reaction seemed attractive to investigate, since independent elegant reports by Professors Benjamin List, Henk Hiemstra, and Darren Dixon documented the excellent control over enantioselectivity that chiral phosphoric acid have in the Pictet-Spengler reaction. Concurrent with the beginning stages of this project, Professor Eric Jacobsen reported the enantioselective thiourea-catalyzed iso-Pictet-Spengler reaction. The results were very good but not as great as the Pictet-Spengler work he pioneered. Around the time this report came out I commenced my reaction studies, and this thesis is the sum of just two projects I worked on. There were many more including halolactonization, VAPOL synthesis, chiral phosphoric acid synthesis, catalytic asymmetric hydroamination, and others.
35

Modeling of complex molecules adsorbed on copper surfaces

Wei, Daniel S. 12 January 2015 (has links)
There has been growing demands towards the efficient production of enantiopure compounds through either asymmetric synthesis or separation from racemic mixtures. Recent studies have examined numerous different methods that may address this challenge. One of these methods involved the interaction of chiral molecules on achiral metal surfaces such as copper to create chiral templates while another method utilizes the interaction of chiral molecules on intrinsically chiral surfaces. Earlier studies using nonhybrid Density Functional Theory (DFT) functional has provided some insights into the geometric structures and relative energies of some of these interactions, but it failed to achieve quantitative agreement with experimental studies. Using dispersion corrected DFT functionals, this thesis present a study of chemisorbed dense adlayers of glycine and alanine on Cu(110) and Cu(3,1,17), physisorbed R-3-methycyclohexanone (R-3MCHO) on Cu(100), Cu(110), Cu(111), Cu(221), and Cu(643)R, and the hydrogenation of formaldehyde and methoxide on Zn or Zr heteroatoms promoted Cu surfaces. In the dense glycine and alanine adlayer study, we have resolved a disagreement between experimental observation made on LEED, STM, and XPD, and we showed that heterochiral and homochiral glycine adlayer coexist on Cu(110). Our model failed to show the minute enantiospecificity for dense alanine adlayer on Cu(3,1,17) which indicated a numeric limitation for computational modeling of surface adsorption. In the physisorbed system, the dispersion corrected methods calculated adsorption energies were in better quantitative agreement with the experimentally observed values than the nonhybrid functionals, but it also created a significant overestimation of total adsorption energies. On the other hand, our model had indicated a previously unexpected adsorbate-induced surface reconstruction on Cu(110). This is promising news in term of computational modeling's capability in examining surface-adsorbate interaction on an atomic scale. As for the hydrogenation of formaldehyde and methoxide on copper surfaces, the model showed that the increased binding strength between the reaction intermediates and the heteroatom promoted copper surfaces to be the primary contributor of the increased reaction rates. Furthermore, our model had also indicated that while clustered heteroatoms are relatively rare, a significant portion of reaction takes place near these clustered structures. It is our hope that the results and techniques presented in this thesis can be used to better understand and predict the interaction of more complex surface-adsorbate interactions.
36

Rhodium and Palladium Catalysis in the Synthesis of Carbo- and Heterocycles

Panteleev, Jane 18 December 2012 (has links)
This thesis describes the development of transition metal catalyzed transformations towards the synthesis of stereochemically rich motifs and heterocycles. The main themes present throughout this thesis are rhodium-catalysis in reactions of boronic acids with alkenes and alkynes, the use of alkynes as a key motif in the synthesis of heterocycles, and the use of domino and one-pot processes to effect high efficiency in multistep transformations. In Chapter 1, a rhodium-catalyzed desymmetrization of diazabicyclic alkenes with boronic acids is discussed. In this work a chemodivergent and enantioselective process for the synthesis of substituted cyclopentenes and cyclopentanes is developed. Both the chemo- and the enantioselectivity of the reaction are shown to be highly dependent on the phosphine ligand structure. The observed reactivity of rhodium is further applied to a domino reaction to synthesize highly substituted benzofuranones. In Chapter 2, the reactivity of boronic acids and alkynes under rhodium catalysis is exploited as a key step to access polycyclic motifs. In the first part of this chapter the development of a domino process using both rhodium and palladium catalysis is described. Detailed mechanistic investigations allow some insight into the interactions between two catalysts. In the last part of this chapter, preliminary experiments in the application of multimetallic catalysis in the synthesis of azadibenzoxepines are discussed. Chapter 3 summarizes work on the arylation of propargylic alcohols with boronic acids under rhodium catalysis. This reaction is shown to proceed with high regioselectivity and can be conducted under mild conditions. The resulting allylic alcohols are shown to be versatile motifs and are applied in a synthesis of indenes and quinolines. In the final chapter of this thesis, iodotriazoles are explored as key intermediates in the synthesis of fused triazole-containing heterocycles. Palladium-catalyzed cyclization, either through C-H functionalization or through Heck coupling, is achieved. Furthermore, it is shown that the copper-catalyzed azide-alkyne cycloaddition and palladium-catalyzed C-H arylation can be combined into a one-pot process.
37

Beta-cyclodextrin modification and host-guest complexation.

Pham, Duc-Truc January 2008 (has links)
A series of five linked β-cyclodextrin (βCD) dimers N,N-bis(6 [superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-succinamide, 66βCD₂su, N-((2[superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A-deoxy-6 [superscript]A -β-cyclodextrinyl)-urea, 36βCD₂su, N,N-bis((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -deoxy-3 [superscript]A-β-cyclodextrinyl)-succinamide, 33βCD₂su, N,N-bis(6[superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-urea, 66βCD₂ur, and N-((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A -deoxy-6 [superscript]A -β-cyclodextrinyl)urea, 36βCD₂ur, has been prepared. The complexation of 6-(4’-(toluidinyl)naphthalene-2-sulphonate, TNS⁻, by βCD and the five linked βCD dimers was characterized by UV, fluorescence and 2D ¹H ROESY NMR spectroscopy. In aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K, TNS⁻ forms host-guest complexes with βCD of stoichiometry βCD.TNS⁻ (K₁ = 3020 and 3320 dm³ mol⁻¹) and βCD₂.TNS⁻ (K₂ = 57 and 11 dm³ mol⁻¹) where the first and second values were determined in UV and fluorescence studies, respectively. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur, the analogous K₁ = 16100, 10900, 10700, 55100 and 18300 dm³ mol⁻¹ and K₁ = 12500, 8700, 9600, 38000 and 9800 dm³ mol⁻¹(fluorimetric studies), respectively. ¹H 2D ROESY NMR studies provided evidence for variation of the mode of complexation of the TNS⁻ guest as the βCD host is changed. The factors affecting complexation are discussed. UV and ¹H NMR studies showed that 6-(4’-(t-butyl)-phenyl)naphthalene-2-sulphonate, BNS⁻, and its dimer, (BNS⁻)₂, form host-guest complexes with βCD of the stoichiometry βCD.BNS⁻ (K₁ = 5.54 × 10⁴ dm³ mol⁻¹ ) and βCD.BNS₂ ²⁻(K₂ = 3.07 × 10² dm³ mol⁻¹ ) where the complexation constant K₁ = [βCD.BNS⁻]/([βCD][BNS⁻] and K₂ = [βCD.(BNS⁻)₂]/([βCD.BNS⁻][BNS⁻]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur the analogous K₁ = 125, 74, 10.2, 364 and 16.1 (× 10⁴ dm³ mol⁻¹ ) and K₂ = 25.7, 2.30, 2.57, 17.6 and 17.2 (× 10² dm³ mol⁻¹ ), respectively. For the dimerisation of BNS⁻ K[subscript]d = 2.63 × 10² dm³ mol⁻¹ . Fluorimetric studies showed that the complexation stability for βCD.BNS⁻, forms βCD. BNS⁻, 66βCD₂su.BNS⁻, 36βCD₂su.BNS⁻, 33βCD₂su. BNS⁻, 66βCD₂ur.BNS⁻ and 36βCD₂ur. BNS⁻ characterized by K₁ = 4.67, 330, 101, 11.0, 435 and 29.6 (× 10⁴ dm³ mol⁻¹ ), respectively. The factors affecting the variations in these data are discussed. The enantioselectivity of substituted βCDs 6 [superscript]A -[bis (carboxylatomethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDidaH₂) and (2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -[bis(carboxylatomethyl)amino]-3[superscript]A -deoxy-β-cyclodextrin (3βCDidaH₂) and 6 [superscript]A -[tris(carboxylatomethyl)(2- aminoethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDedtaH₃) and their Eu³ ⁺ complexes in forming host-guest complexes with six enantiomeric guests in D₂O was studied by 1D and 2D ¹H NMR (600 MHz) spectroscopy. The guests are D/L-tryptophanate (Trp⁻), 4-hydroxyl-D/L-phenylglycinate (4HOPhg⁻), D/L-histidinate (His⁻), D/L-pheniramine (Phm), D/L-phenylglycinate (Phg⁻) and (D/L)-β-phenylserinate (βPhs⁻). Enantioselective host-guest complexation was observed between the [Eu(6βCDida)]⁺ , [Eu(3βCDida)]⁺ and [Eu(6βCDedta)] complexes and Trp⁻, [Eu(6βCDida)]⁺ and [Eu(3βCDida)]⁺ and 4HOPhg⁻, and βCD, 6βCDida²⁻, 3βCDida²⁻, 6βCDedta³⁻ and the Eu³⁺complexes of the three substituted βCDs and Phm. The His⁻, Phg⁻ and βPhs⁻ enantiomers showed no evidence for selective host-guest complexation. The preparation of 3βCDidaH₂ and 6βCDedtaH₃ and the determination of their pK[subscript]a s are also reported. In collaboration with the research group of Prof. Matthew A. Tarr, (University of New Orleans, USA), the 6βCDida²⁻ and the 6βCDedta³⁻ has been utilized to improve Fenton oxidation of aromatic pollutants. To further support to this work, the binary complexation of Fe² ⁺ by 6βCDida²⁻ has been studied by potentiometric titrations. A series of six modified poly(acrylic acid)s 3% substituted with either βCD or the adamantyl moiety with different length of substituent chain was synthesised. To advance the understanding and control of aqueous supramolecular assembly, the host-guest interactions between the βCD substituted poly(acrylic acid)s and adamantane-1-carboxylic; adamantyl substituted poly(acrylic acid)s with βCD and linked βCD dimers; and between both βCD and adamantyl substituted poly(acrylic acid)s have been studied. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1311237 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2008
38

Beta-cyclodextrin modification and host-guest complexation.

Pham, Duc-Truc January 2008 (has links)
A series of five linked β-cyclodextrin (βCD) dimers N,N-bis(6 [superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-succinamide, 66βCD₂su, N-((2[superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A-deoxy-6 [superscript]A -β-cyclodextrinyl)-urea, 36βCD₂su, N,N-bis((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -deoxy-3 [superscript]A-β-cyclodextrinyl)-succinamide, 33βCD₂su, N,N-bis(6[superscript]A-deoxy-6[superscript]A-β-cyclodextrinyl)-urea, 66βCD₂ur, and N-((2 [superscript]A S,3 [superscript]A S)-3 [superscript]A-deoxy-3 [superscript]A-β-cyclodextrinyl)-N’-(6 [superscript]A -deoxy-6 [superscript]A -β-cyclodextrinyl)urea, 36βCD₂ur, has been prepared. The complexation of 6-(4’-(toluidinyl)naphthalene-2-sulphonate, TNS⁻, by βCD and the five linked βCD dimers was characterized by UV, fluorescence and 2D ¹H ROESY NMR spectroscopy. In aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K, TNS⁻ forms host-guest complexes with βCD of stoichiometry βCD.TNS⁻ (K₁ = 3020 and 3320 dm³ mol⁻¹) and βCD₂.TNS⁻ (K₂ = 57 and 11 dm³ mol⁻¹) where the first and second values were determined in UV and fluorescence studies, respectively. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur, the analogous K₁ = 16100, 10900, 10700, 55100 and 18300 dm³ mol⁻¹ and K₁ = 12500, 8700, 9600, 38000 and 9800 dm³ mol⁻¹(fluorimetric studies), respectively. ¹H 2D ROESY NMR studies provided evidence for variation of the mode of complexation of the TNS⁻ guest as the βCD host is changed. The factors affecting complexation are discussed. UV and ¹H NMR studies showed that 6-(4’-(t-butyl)-phenyl)naphthalene-2-sulphonate, BNS⁻, and its dimer, (BNS⁻)₂, form host-guest complexes with βCD of the stoichiometry βCD.BNS⁻ (K₁ = 5.54 × 10⁴ dm³ mol⁻¹ ) and βCD.BNS₂ ²⁻(K₂ = 3.07 × 10² dm³ mol⁻¹ ) where the complexation constant K₁ = [βCD.BNS⁻]/([βCD][BNS⁻] and K₂ = [βCD.(BNS⁻)₂]/([βCD.BNS⁻][BNS⁻]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm⁻³ and 298.2 K. For 66βCD₂su, 36βCD₂su, 33βCD₂su, 66βCD₂ur and 36βCD₂ur the analogous K₁ = 125, 74, 10.2, 364 and 16.1 (× 10⁴ dm³ mol⁻¹ ) and K₂ = 25.7, 2.30, 2.57, 17.6 and 17.2 (× 10² dm³ mol⁻¹ ), respectively. For the dimerisation of BNS⁻ K[subscript]d = 2.63 × 10² dm³ mol⁻¹ . Fluorimetric studies showed that the complexation stability for βCD.BNS⁻, forms βCD. BNS⁻, 66βCD₂su.BNS⁻, 36βCD₂su.BNS⁻, 33βCD₂su. BNS⁻, 66βCD₂ur.BNS⁻ and 36βCD₂ur. BNS⁻ characterized by K₁ = 4.67, 330, 101, 11.0, 435 and 29.6 (× 10⁴ dm³ mol⁻¹ ), respectively. The factors affecting the variations in these data are discussed. The enantioselectivity of substituted βCDs 6 [superscript]A -[bis (carboxylatomethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDidaH₂) and (2 [superscript]A S,3 [superscript]A S)-3 [superscript]A -[bis(carboxylatomethyl)amino]-3[superscript]A -deoxy-β-cyclodextrin (3βCDidaH₂) and 6 [superscript]A -[tris(carboxylatomethyl)(2- aminoethyl)amino]-6 [superscript]A -deoxy-β-cyclodextrin (6βCDedtaH₃) and their Eu³ ⁺ complexes in forming host-guest complexes with six enantiomeric guests in D₂O was studied by 1D and 2D ¹H NMR (600 MHz) spectroscopy. The guests are D/L-tryptophanate (Trp⁻), 4-hydroxyl-D/L-phenylglycinate (4HOPhg⁻), D/L-histidinate (His⁻), D/L-pheniramine (Phm), D/L-phenylglycinate (Phg⁻) and (D/L)-β-phenylserinate (βPhs⁻). Enantioselective host-guest complexation was observed between the [Eu(6βCDida)]⁺ , [Eu(3βCDida)]⁺ and [Eu(6βCDedta)] complexes and Trp⁻, [Eu(6βCDida)]⁺ and [Eu(3βCDida)]⁺ and 4HOPhg⁻, and βCD, 6βCDida²⁻, 3βCDida²⁻, 6βCDedta³⁻ and the Eu³⁺complexes of the three substituted βCDs and Phm. The His⁻, Phg⁻ and βPhs⁻ enantiomers showed no evidence for selective host-guest complexation. The preparation of 3βCDidaH₂ and 6βCDedtaH₃ and the determination of their pK[subscript]a s are also reported. In collaboration with the research group of Prof. Matthew A. Tarr, (University of New Orleans, USA), the 6βCDida²⁻ and the 6βCDedta³⁻ has been utilized to improve Fenton oxidation of aromatic pollutants. To further support to this work, the binary complexation of Fe² ⁺ by 6βCDida²⁻ has been studied by potentiometric titrations. A series of six modified poly(acrylic acid)s 3% substituted with either βCD or the adamantyl moiety with different length of substituent chain was synthesised. To advance the understanding and control of aqueous supramolecular assembly, the host-guest interactions between the βCD substituted poly(acrylic acid)s and adamantane-1-carboxylic; adamantyl substituted poly(acrylic acid)s with βCD and linked βCD dimers; and between both βCD and adamantyl substituted poly(acrylic acid)s have been studied. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1311237 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2008
39

Séparation par voie enzymatique d'énantiomères de profènes : optimisation du biocatalyseur et mise en oeuvre en dioxyde de carbone supercritique / Enzymatic separation of profens enantiomers : optimisation of biocatalyst and implementation in supercritical carbon dioxide

Gérard, Doriane 23 November 2016 (has links)
La séparation de deux énantiomères est un procédé d’intérêt pour l’industrie pharmaceutique. En effet, souvent un seul des énantiomères exerce l'activité biologique requise. Cette problématique est abordée ici par l'utilisation d'enzymes énantiosélectives qui est une alternative intéressante aux méthodes conventionnelles (chromatographie chirale, synthèse asymétrique ou cristallisation). Cette approche a été mise en oeuvre pour les molécules de la famille des profènes (l’Ibuprofène, le Kétoprofène ou le Naproxène par exemple) qui sont des acides 2- arylpropioniques et constituent une classe importante de médicaments anti-inflammatoires non stéroïdiens. Tout d’abord, un travail de recherche dans le domaine de la catalyse enzymatique et de l’ingénierie d’enzymes a été effectué. Des enzymes aux potentialités prometteuses, issues de la levure Yarrowia lipolytica, pour la résolution de ces trois anti-inflammatoires ont été identifiées. S’appuyant sur la modélisation moléculaire, l’ingénierie moléculaire a été utilisée pour accéder à des enzymes performantes tant du point de vue de la sélectivité que de l’activité. Les réactions ont été réalisées conventionnellement dans un système diphasique phase aqueuse/décane car les profènes et les esters associés sont des substrats hydrophobes et très faiblement solubles dans l'eau, la réaction doit donc être effectuée dans un solvant apolaire en contact avec une phase aqueuse où l'enzyme libre est dissoute. Ce mode opératoire permet d'éviter une immobilisation de l'enzyme. Une enzyme pour chaque substrat avec une énantiosélectivité suffisante a pu être développée, à savoir Lip2p V232A pour l’ibuprofène, V235S pour le naproxène et V232F pour le kétoprofène. Les lipases de Candida rugosa se sont également avérées intéressantes pour la résolution des profènes mais moins que les lipases précédemment évoquées. Le deuxième aspect de cette thèse s’est intéressé à la mise oeuvre de cette technique de résolution enzymatique dans un procédé innovant de Chimie Verte où le dioxyde de carbone supercritique (CO2SC) remplace le décane. En effet, les solvants organiques tels que le décane peuvent être toxiques mais aussi difficiles à éliminer, à la fin du processus, ce qui conduit à des étapes fastidieuses et coûteuses de purification. Dans un premier temps l’étude a porté sur la résolution de l’acide 2-bromo phényl acétique par l’hydrolyse de son ester octylique (ester + eau <=> acide (profène) + alcool). L'acidification de la phase aqueuse en contact avec CO2SC (formation d'acide carbonique) s’est montrée préjudiciable pour obtenir des conversions élevées. Cet inconvénient a été atténué en utilisant des concentrations assez élevées de sels (Na2HPO4 et KH2PO4) pour tamponner la phase aqueuse. Une étude spécifique en cellule haute pression utilisant des sondes solvatochromiques a permis d’établir que l’utilisation de concentrations élevées de sels (de l’ordre de 1000 mmol/L) permettait de maintenir un pH de l‘ordre de 6. Dans ces conditions, des conversions élevées ont pu être obtenues pour des temps de réactions de l’ordre de 100 h. Cependant la cinétique s’est avérée plus lente par rapport à celle observée avec le décane. L’explication de cette différence n’est pas encore totalement élucidée mais deux pistes ont été privilégiées : la formation de carbamates dues aux interactions entre le CO2SC et les acides aminés composant l’enzyme ou une mauvaise ouverture du volet moléculaire qui recouvre le site actif de l’enzyme liée à la moindre hydrophobicité du CO2SC hydraté. Cette résolution énantiomérique a également été mise en oeuvre dans un système sans phase aqueuse en utilisant l‘enzyme sous sa forme immobilisée sur support solide en utilisant la réaction réverse, l’estérification. Utilisant les mêmes approches, la résolution énantiomérique de l’ibuprofène a également été réalisée. Les meilleurs résultats obtenus en système diphasique phase aqueuse/CO2SC permettent en 75 heures une résolution quasi-totale. / The separation of the two enantiomers (or enantiomeric resolution) is a process of interest to the pharmaceutical industry. Indeed, very often, only one of the enantiomers has the required biological activity. This issue is addressed here by the use of enantioselective enzymes which is an interesting alternative to conventional methods (chiral chromatography, asymmetric synthesis, crystallization). This approach has been implemented for separation of molecules of the profens family (Ibuprofen, Naproxen or Ketoprofen for example) that are 2-arylpropionic acids and are an important class of anti-inflammatory drugs (NSAIDs). One first aspect of this work was to use molecular modeling and molecular engineering to identify enzymes, from the yeast Yarrovia lipolytica, with promising potential from the point of view of selectivity and activity. Reactions were carried out conventionally in a biphasic aqueous phase/decane system since the profens and related esters are hydrophobic substrates and very sparingly soluble in water so that the reaction must be carried out in an apolar solvent in contact with an aqueous phase where the enzyme is dissolved. This procedure avoids immobilization of the enzyme. An enzyme with good enantioselectivity for each substrate was developed, namely Lip2p V232A for ibuprofen, V235S for naproxen and V232F for ketoprofen. Lipases of Candida rugosa also proved useful for the resolution of ibuprofen, naproxen and ketoprofen but were less efficient than the lipases mentioned above. The second aspect of this thesis focused to the implementation of this enzymatic resolution technology in an innovative process for Green Chemistry where decane was replaced by supercritical carbon dioxide (scCO2).Indeed, organic solvents such as decane may be toxic but also difficult to remove at the end of the process, which leads to cumbersome and costly purification steps. Initially the study focused on enzymatic resolution of 2- bromo phenyl acetic acid by hydrolysis of its octyl ester (ester + water <=> acid (profen) + alcohol). Acidification of the aqueous phase in contact with scCO2 (formation of carbonic acid) proved to be detrimental to obtain high conversions. This disadvantage was mitigated by using relatively high concentrations of salts (1000 mmol/L) to buffer the aqueous phase. A specific study in a high pressure cell using solvatochromic probes showed that the use of high concentrations of salts allowed maintaining a pH of about 6. In these conditions, high conversions could be obtained for reaction times of 100 hours. However kinetics proved to be slower compared to those observed using decane as the organic phase. The explanation for this difference is not yet fully understood but two hypotheses can be evoked: formation of carbamates due to interactions between the scCO2 and amino acids or a bad opening of the "lid" that covers the active site related to a lower hydrophobicity of hydrated scCO2. This enantiomeric resolution was also implemented in a non-aqueous phase system using the enzyme in its immobilized form on a solid support, using the reverse reaction: esterification of profen. Using the same approach, the enantiomeric resolution of ibuprofen was also carried out. Best results using aqueous phase/scCO2 system allowed total resolution within 75 hours.
40

Towards the development, application and understanding of copper-catalysed alkene functionalisation processes using iodonium salts

Male, Henry Peter John January 2018 (has links)
This thesis comprises three projects focused on the use of the combination of catalytic copper and iodonium salts towards the functionalisation of alkenes. Chapter 2 details the development of an enantioselective and regiodivergent allylic amide arylation procedure using a specific copper(II)-bisoxazoline pre-catalyst and hexafluorophosphate diaryliodonium salts. The regioselectivity of the process was discovered to be controlled by the electronic properties of the iodane employed, allowing enamide production to be biased with electron-poor iodonium salts and oxazines to be produced with electron-rich analogues. An overall scope of 38 compounds was collaboratively elaborated, with 20 synthesised personally. All products were generated in useful yields and high levels of enantioselectivity. Chapter 3 describes efforts towards the application of a copper-catalysed oxy-alkenylation procedure to the production of the macrolidal natural product (-)-lyngbyaloside B. It is proposed that an elaborate homoallylic carbamate may be coupled with a complex polyoxygenated alkenyl(aryl)iodonium salt as a fragment coupling for polyketide synthesis. Following extensive investigations, it was discovered that the challenging vinyl-iodonium salt could be synthesised in good yields and then coupled with the desired homoallylic carbamate, albeit in limited yield and low d.r. Chapter 4 presents initial studies towards a computational understanding of the copper-catalysed arylation of alkenes with iodonium salts. Evidence is presented to suggest that two functionalisation modes are energetically accessible, allowing the production of regioisomeric arylated products.

Page generated in 0.0916 seconds