• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

<strong>Deep Learning-Based Anomaly  Detection in TLS Encrypted Traffic</strong>

Kehinde Ayano (16650471) 03 August 2023 (has links)
<p> The growing trend of encrypted network traffic is changing the cybersecurity threat scene. Most critical infrastructures and organizations enhance service delivery by embracing digital platforms and applications that use encryption to ensure that data and Information are moved across networks in an encrypted form to improve security. While this protects data confidentiality, hackers are also taking advantage of encrypted network traffic to hide malicious software known as malware that will easily bypass the conventional detection mechanisms on the system because the traffic is not transparent for the monitoring mechanism on the system to analyze. Cybercriminals leverage encryption using cryptographic protocols such as SSL/TLS to launch malicious attacks. This hidden threat exists because of the SSL encryption of benign traffic. Hence, there is a need for visibility in encrypted traffic. This research was conducted to detect malware in encrypted network traffic without decryption. The existing solution involves bulk decryption, analysis, and re-encryption. However, this method is prone to privacy issues, is not cost-efficient, and is time-consuming, creating huge overhead on the network. In addition, limited research exists on detecting malware in encrypted traffic without decryption. There is a need to strike a balance between security and privacy by building an intelligent framework that can detect malicious activity in encrypted network traffic without decrypting the traffic prior to inspection. With the payload still encrypted, the study focuses on extracting metadata from flow features to train the machine-learning model. It further deployed this set of features as input to an autoencoder, leveraging the construction error of the autoencoder for anomaly detection. </p>
22

Generic Encrypted Traffic Identification using Network Grammar : A Case Study in Passive OS Fingerprinting / Generisk Krypterad Trafikidentifiering med Nätverksgrammatik : En fallstudie i passiv osfingeravtryck

Rajala, Lukas, Scott, Kevin January 2022 (has links)
The increase in cybercrime and cyber-warfare has spurred the cat-and-mouse game of finding and attacking vulnerable devices on government or private company networks. The devices attacked are often forgotten computers that run operating systems with known exploits. Finding these devices are crucial for both an attacker and defender since they may be the only weak link on the network. Device discovery on a network using probing or active fingerprinting methods results in extra traffic on the network, which may strain fragile networks and generates suspect traffic that may get flagged as intrusive. Using passive OS fingerprinting allows an actor to listen in and classify active devices on a network. This thesis shows the features that can be exploited for OS fingerprinting and discusses the importance of TLS payload and time-based features. We also present a data collection strategy that could be utilized for simulating multiple OSs and collecting new datasets. We found that the TLS attributes such as cipher suites play an important role in distinguishing between OS versions.
23

Data Protection in Transit and at Rest with Leakage Detection

Denis A Ulybyshev (6620474) 15 May 2019 (has links)
<p>In service-oriented architecture, services can communicate and share data among themselves. This thesis presents a solution that allows detecting several types of data leakages made by authorized insiders to unauthorized services. My solution provides role-based and attribute-based access control for data so that each service can access only those data subsets for which the service is authorized, considering a context and service’s attributes such as security level of the web browser and trust level of service. My approach provides data protection in transit and at rest for both centralized and peer-to-peer service architectures. The methodology ensures confidentiality and integrity of data, including data stored in untrusted cloud. In addition to protecting data against malicious or curious cloud or database administrators, the capability of running a search through encrypted data, using SQL queries, and building analytics over encrypted data is supported. My solution is implemented in the “WAXEDPRUNE” (Web-based Access to Encrypted Data Processing in Untrusted Environments) project, funded by Northrop Grumman Cybersecurity Research Consortium. WAXEDPRUNE methodology is illustrated in this thesis for two use cases, including a Hospital Information System with secure storage and exchange of Electronic Health Records and a Vehicle-to-Everything communication system with secure exchange of vehicle’s and drivers’ data, as well as data on road events and road hazards. </p><p>To help with investigating data leakage incidents in service-oriented architecture, integrity of provenance data needs to be guaranteed. For that purpose, I integrate WAXEDPRUNE with IBM Hyperledger Fabric blockchain network, so that every data access, transfer or update is recorded in a public blockchain ledger, is non-repudiatable and can be verified at any time in the future. The work on this project, called “Blockhub,” is in progress.</p>
24

Autonomous email notification- and booking management system : In a property administration environment / Autonomt notifikationssystem och bokningshanteringssystem : Inom fastighetsadministration

Söderlund, Henrik January 2017 (has links)
The contracting company is in the desire of an autonomous system that can do tedious administrative work that is today done manually. They would like to autonomically notify customers about incoming alarms from the customers’ real estates’ Data Under Centrals and to notify about bookings, in which a complete booking system has to be created, together with a file system analyzer that notifies about new files in the customers’ project folders. A notification system was made that was easily deployable and ready to use. The system had to be completely configurable for the contracting company to use it to its full potential. The notification system was to send notifications when a new alarm had entered the database, a booking had to be reminded of, a rebooking was made or a file had been added to the file system in a designated project folder. The contracting company had a web portal that was further developed in ASP.net in which a booking calendar and booking viewer page was added together with a form creation and management system. A demo buttons page was also added for generating demo notifications for the company to show it’s customers how the system responds to certain events. The employees at GATE IBS feel confident that this system will help them in their working environment to further strengthen their position as an industry leading business in control- and monitoring technology. / Det uppdragsgivande företaget önskar ett autonomt system som kan utföra tidskrävande administrativt arbete som idag utförs manuellt. De vill autonomt informera kunderna om inkommande larm från kundens fastigheters "Data Under Centrals" samt meddela om bokningar där ett komplett bokningssystem måste skapas tillsammans med en filsystemanalysator som meddelar om nya filer i kundens projektmapp. Ett notifikationssystem gjordes som var enkelt att distribuera och redo att använda. Systemet måste vara helt konfigurerbart för att det uppdragsgivande bolaget ska kunna använda programmet till sin fulla potential. Anmälningssystemet skulle skicka meddelanden när ett nytt larm hade kommit in i databasen, en bokning måste påminnas om, ombokning gjordes eller en fil hade lagts till filsystemet i en utsedd projektmapp. Kontraktsföretaget hade en webbportal som vidareutvecklades i ASP.net där en bokningskalender och bokningsvisningssida lagts till tillsammans med ett formulärgenererings- och formulärhanteringssystem och en demoknappssida för att generera demonotifikationer för att företaget ska kunna visa kunderna hur systemet svarar på vissa händelser. De anställda på GATE IBS är övertygade om att detta system kommer att hjälpa dem i sin arbetsmiljö för att ytterligare stärka sin ställning som branschledande företag inom kontroll- och övervakningsteknik.
25

Towards Realistic Datasets forClassification of VPN Traffic : The Effects of Background Noise on Website Fingerprinting Attacks / Mot realistiska dataset för klassificering av VPN trafik : Effekten av bakgrundsoljud på website fingerprint attacker

Sandquist, Christoffer, Ersson, Jon-Erik January 2023 (has links)
Virtual Private Networks (VPNs) is a booming business with significant margins once a solid user base has been established and big VPN providers are putting considerable amounts of money into marketing. However, there exists Website Fingerprinting (WF) attacks that are able to correctly predict which website a user is visiting based on web traffic even though it is going through a VPN tunnel. These attacks are fairly accurate when it comes to closed world scenarios but a problem is that these scenarios are still far away from capturing typical user behaviour.In this thesis, we explore and build tools that can collect VPN traffic from different sources. This traffic can then be combined into more realistic datasets that we evaluate the accuracy of WF attacks on. We hope that these datasets will help us and others better simulate more realistic scenarios.Over the course of the project we developed automation scripts and data processing tools using Bash and Python. Traffic was collected on a server provided by our university using a combination of containerisation, the scripts we developed, Unix tools and Wireshark. After some manual data cleaning we combined our captured traffic together with a provided dataset of web traffic and created a new dataset that we used in order to evaluate the accuracy of three WF attacks.By the end we had collected 1345 capture files of VPN traffic. All of the traffic were collected from the popular livestreaming website twitch.tv. Livestreaming channels were picked from the twitch.tv frontpage and we ended up with 245 unique channels in our dataset. Using our dataset we managed to decrease the accuracy of all three tested WF attacks from 90% down to 47% with a WF attack confidence threshold of0.0 and from 74% down to 17% with a confidence threshold of 0.99. Even though this is a significant decrease in accuracy it comes with a roughly tenfold increase in the number of captured packets for the WF attacker.Thesis artifacts are available at github.com/C-Sand/rds-collect. / Virtual Private Network (VPN) marknaden har växt kraftigt och det finns stora marginaler när en solid användarbas väl har etablerats. Stora VPN-leverantörer lägger dessutom avsevärda summor pengar på marknadsföring. Det finns dock WF-attacker som kan korrekt gissa vilken webbplats en användare besöker baserat på webbtrafik, även om den går genom en VPN-tunnel.Dessa attacker har rätt bra precision när det kommer till scenarier i sluten värld, men problemet är att dessa fortfarande är långt borta från att simulera typiskt användarbeteende.I det här examensarbetet utforskar och bygger vi verktyg som kan samla in VPNtrafik från olika källor. Trafiken kan användas för att kombineras till mera realistiska dataset och sedan användas för att utvärdera träffsäkerheten av WF-attacker. Vi hoppas att dessa dataset kommer att hjälpa oss och andra att bättre simulera verkliga scenarier.Under projektets gång utvecklade vi ett par automatiserings skript och verktyg för databearbetning med hjälp av Bash och Python. Trafik samlades in på en server från vårt universitet med en kombination av containeriseringen, skripten vi utvecklade, Unix-verktyg och Wireshark. Efter en del manuell datarensning kombinerade vi vår infångade trafik tillsammans med det tillhandahållna datasetet med webbtrafik och skapade ett nytt dataset som vi använde för att utvärdera riktigheten av tre WF attacker.Vid slutet hade vi samlat in 1345 filer med VPN-trafik. All trafik samlades in från den populära livestream plattformen twitch.tv. Livestreamingkanaler plockades ut från twitchs förstasida och vi slutade med 245 unika kanaler i vårat dataset. Med hjälp av vårat dataset lyckades vi minska noggrannheten för alla tre testade WF-attacker från 90% ner till 47% med tröskeln på 0,0 och från 74% ner till 17% med en tröskel på 0,99. Även om detta är en betydande minskning av noggrannheten kommer det med en ungefär tiofaldig ökning av antalet paket. I slutändan samlade vi bara trafik från twitch.tv men fick ändå några intressanta resultat och skulle gärna se fortsatt forskning inom detta område.Kod, instruktioner, dataset och andra artefakter finns tillgängliga via github.com/CSand/rds-collect.
26

PREVENTING DATA POISONING ATTACKS IN FEDERATED MACHINE LEARNING BY AN ENCRYPTED VERIFICATION KEY

Mahdee, Jodayree 06 1900 (has links)
Federated learning has gained attention recently for its ability to protect data privacy and distribute computing loads [1]. It overcomes the limitations of traditional machine learning algorithms by allowing computers to train on remote data inputs and build models while keeping participant privacy intact. Traditional machine learning offered a solution by enabling computers to learn patterns and make decisions from data without explicit programming. It opened up new possibilities for automating tasks, recognizing patterns, and making predictions. With the exponential growth of data and advances in computational power, machine learning has become a powerful tool in various domains, driving innovations in fields such as image recognition, natural language processing, autonomous vehicles, and personalized recommendations. traditional machine learning, data is usually transferred to a central server, raising concerns about privacy and security. Centralizing data exposes sensitive information, making it vulnerable to breaches or unauthorized access. Centralized machine learning assumes that all data is available at a central location, which is only sometimes practical or feasible. Some data may be distributed across different locations, owned by different entities, or subject to legal or privacy restrictions. Training a global model in traditional machine learning involves frequent communication between the central server and participating devices. This communication overhead can be substantial, particularly when dealing with large-scale datasets or resource-constrained devices. / Recent studies have uncovered security issues with most of the federated learning models. One common false assumption in the federated learning model is that participants are the attacker and would not use polluted data. This vulnerability enables attackers to train their models using polluted data and then send the polluted updates to the training server for aggregation, potentially poisoning the overall model. In such a setting, it is challenging for an edge server to thoroughly inspect the data used for model training and supervise any edge device. This study evaluates the vulnerabilities present in federated learning and explores various types of attacks that can occur. This paper presents a robust prevention scheme to address these vulnerabilities. The proposed prevention scheme enables federated learning servers to monitor participants actively in real-time and identify infected individuals by introducing an encrypted verification scheme. The paper outlines the protocol design of this prevention scheme and presents experimental results that demonstrate its effectiveness. / Thesis / Doctor of Philosophy (PhD) / federated learning models face significant security challenges and can be vulnerable to attacks. For instance, federated learning models assume participants are not attackers and will not manipulate the data. However, in reality, attackers can compromise the data of remote participants by inserting fake or altering existing data, which can result in polluted training results being sent to the server. For instance, if the sample data is an animal image, attackers can modify it to contaminate the training data. This paper introduces a robust preventive approach to counter data pollution attacks in real-time. It incorporates an encrypted verification scheme into the federated learning model, preventing poisoning attacks without the need for specific attack detection programming. The main contribution of this paper is a mechanism for detection and prevention that allows the training server to supervise real-time training and stop data modifications in each client's storage before and between training rounds. The training server can identify real-time modifications and remove infected remote participants with this scheme.
27

Ενσωματωμένο σύστημα ασφαλούς ελέγχου, προστασίας και ανανέωσης λογισμικού απομακρυσμένου υπολογιστή μέσω διαδικτύου

Σπανού, Ελένη 13 September 2011 (has links)
Είναι ευρέως αποδεκτό ότι η ασφάλεια δεδομένων έχει ήδη ξεκινήσει να διαδραματίζει κεντρικό ρόλο στον σχεδιασμό μελλοντικών συστημάτων τεχνολογίας πληροφορίας (IT – Information Technology). Μέχρι πριν από λίγα χρόνια, ο υπολογιστής αποτελούσε την κινητήρια δύναμη της ψηφιακής επικοινωνίας. Πρόσφατα, ωστόσο, έχει γίνει μια μετατόπιση προς τις εφαρμογές τεχνολογίας πληροφορίας που υλοποιούνται σαν ενσωματωμένα συστήματα. Πολλές από αυτές τις εφαρμογές στηρίζονται σε μεγάλο βαθμό σε μηχανισμούς ασφαλείας, περιλαμβάνοντας την ασφάλειας για ασύρματα τηλέφωνα, φαξ, φορητούς υπολογιστές, συνδρομητική τηλεόραση, καθώς και συστήματα προστασίας από αντιγραφή για audio / video καταναλωτικά προϊόντα και ψηφιακούς κινηματογράφους. Το γεγονός ότι ένα μεγάλο μέρος των ενσωματωμένων εφαρμογών είναι ασύρματο, καθιστά το κανάλι επικοινωνίας ιδιαίτερα ευάλωτο και φέρνει στο προσκήνιο την ανάγκη για ακόμη μεγαλύτερη ασφάλεια. Παράλληλα με τα ενσωματωμένα συστήματα, η εκρηκτική ανάπτυξη των ψηφιακών επικοινωνιών έχει επιφέρει πρόσθετες προκλήσεις για την ασφάλεια. Εκατομμύρια ηλεκτρονικές συναλλαγές πραγματοποιούνται κάθε μέρα, και η ταχεία ανάπτυξη του ηλεκτρονικού εμπορίου κατέστησε την ασφάλεια ένα θέμα ζωτικής σημασίας για πολλές καταναλωτές. Πολύτιμες επιχειρηματικές ευκαιρίες , καθώς επίσης και πολλές υπηρεσίες πραγματοποιούνται κάθε μέρα μέσω του Διαδικτύου και πλήθος ευαίσθητων δεδομένων μεταφέρονται από ανασφαλή κανάλια επικοινωνίας σε όλο τον κόσμο. Η επιτακτική ανάγκη για την αντιμετώπιση αυτών των προβλημάτων, κατέστησε πολύ σημαντική την συμβολή της κρυπτογραφίας, και δημιούργησε μια πολύ υποσχόμενη λύση, με την οποία ενσωματωμένα συστήματα σε συνδυασμό με κρυπτογραφικά πρωτόκολλα, θα μπορούσαν να μας οδηγήσουν στην εξασφάλιση των επιθυμητών αποτελεσμάτων. Στην παρούσα εργασία, παρουσιάζουμε την υλοποίηση ενός ενσωματωμένου συστήματος, εμπλουτισμένο με κρυπτογραφικά πρωτόκολλα, που ουσιαστικά μεταμορφώνει έναν κοινό ηλεκτρονικό υπολογιστή σε ένα ισχυρό Crypto System PC, και έχει σαν κύρια αρμοδιότητα να μπορεί να επικοινωνεί με ένα υπολογιστικό σύστημα και να στέλνει πληροφορίες για την κατάσταση του μέσω ασφαλούς σύνδεσης διαδικτύου σε κάποιον απομακρυσμένο υπολογιστή ελέγχου/καταγραφής συμβάντων σε ώρες που δεν είναι εφικτή η παρουσία εξειδικευμένου προσωπικού για τον έλεγχο του. Αξιολογούμε την απόδοση του και την λειτουργία του με την εκτέλεση διάφορων πειραμάτων, ενώ επίσης προτείνουμε λύσεις για πιο ιδανικές και αποδοτικές συνθήκες λειτουργίας για μελλοντικές εφαρμογές. / It is widely recognized that data security already plays a central role in the design of future IT systems.Until a few years ago, the PC had been the major driver of the digital economy. Recently, however, there has been a shift towards IT applications realized as embedded systems.Many of those applications rely heavily on security mechanisms, including security for wireless phones, faxes, wireless computing, pay-TV, and copy protection schemes for audio/video consumer products and digital cinemas. Note that a large share of those embedded applications will be wireless, which makes the communication channel especially vulnerable and the need for security even more obvious. In addition to embedded devices, the explosive growth of digital communications also brings additional security challenges. Millions of electronic transactions are completed each day, and the rapid growth of eCommerce has made security a vital issue for many consumers. Valuable business opportunities are realized over the Internet and megabytes of sensitive data are transferred and moved over insecure communication channels around the world. The urgent need to face these problems has made the contribution of cryptography very important , and created a very promising solution, in which embedded systems in combination with cryptographic protocols, could lead us to obtain the desired results. In this paper, we present the implementation of an embedded system, enriched with cryptographic protocols, which turns a common computer into a powerful Crypto System PC, and has as its primary responsibility to be able to communicate with a computer system and send information for its situation through secure internet connections to a remote computer which is responsible for recording of events, when there is not qualified staff to control the computer system. We evalauate its performance and operation, by executing various experiments and we also suggest solutions for more optimal and efficient operating conditions for future applications.
28

Auditable Computations on (Un)Encrypted Graph-Structured Data

Servio Ernesto Palacios Interiano (8635641) 29 July 2020 (has links)
<div>Graph-structured data is pervasive. Modeling large-scale network-structured datasets require graph processing and management systems such as graph databases. Further, the analysis of graph-structured data often necessitates bulk downloads/uploads from/to the cloud or edge nodes. Unfortunately, experience has shown that malicious actors can compromise the confidentiality of highly-sensitive data stored in the cloud or shared nodes, even in an encrypted form. For particular use cases —multi-modal knowledge graphs, electronic health records, finance— network-structured datasets can be highly sensitive and require auditability, authentication, integrity protection, and privacy-preserving computation in a controlled and trusted environment, i.e., the traditional cloud computation is not suitable for these use cases. Similarly, many modern applications utilize a "shared, replicated database" approach to provide accountability and traceability. Those applications often suffer from significant privacy issues because every node in the network can access a copy of relevant contract code and data to guarantee the integrity of transactions and reach consensus, even in the presence of malicious actors.</div><div><br></div><div>This dissertation proposes breaking from the traditional cloud computation model, and instead ship certified pre-approved trusted code closer to the data to protect graph-structured data confidentiality. Further, our technique runs in a controlled environment in a trusted data owner node and provides proof of correct code execution. This computation can be audited in the future and provides the building block to automate a variety of real use cases that require preserving data ownership. This project utilizes trusted execution environments (TEEs) but does not rely solely on TEE's architecture to provide privacy for data and code. We thoughtfully examine the drawbacks of using trusted execution environments in cloud environments. Similarly, we analyze the privacy challenges exposed by the use of blockchain technologies to provide accountability and traceability.</div><div><br></div><div>First, we propose AGAPECert, an Auditable, Generalized, Automated, Privacy-Enabling, Certification framework capable of performing auditable computation on private graph-structured data and reporting real-time aggregate certification status without disclosing underlying private graph-structured data. AGAPECert utilizes a novel mix of trusted execution environments, blockchain technologies, and a real-time graph-based API standard to provide automated, oblivious, and auditable certification. This dissertation includes the invention of two core concepts that provide accountability, data provenance, and automation for the certification process: Oblivious Smart Contracts and Private Automated Certifications. Second, we contribute an auditable and integrity-preserving graph processing model called AuditGraph.io. AuditGraph.io utilizes a unique block-based layout and a multi-modal knowledge graph, potentially improving access locality, encryption, and integrity of highly-sensitive graph-structured data. Third, we contribute a unique data store and compute engine that facilitates the analysis and presentation of graph-structured data, i.e., TruenoDB. TruenoDB offers better throughput than the state-of-the-art. Finally, this dissertation proposes integrity-preserving streaming frameworks at the edge of the network with a personalized graph-based object lookup.</div>

Page generated in 0.035 seconds