• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1231
  • 781
  • Tagged with
  • 2012
  • 1976
  • 1945
  • 194
  • 171
  • 137
  • 126
  • 125
  • 121
  • 114
  • 107
  • 105
  • 101
  • 94
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Hur elpriser påverkar driften av ett flerbostadshus i Borlänge : Solceller, värmepump och fjärrvärme i ett kombinerat system

Möller, Hampus January 2023 (has links)
I Sverige finns det cirka 2,7 miljoner lägenheter i flerbostadshus, varav merparten är byggda innan 1980 med sämre energiklasser. Till följd av nya hållbarhetskrav från myndigheter kopplat till energiprestanda är det troligt att flerbostadshus i större utsträckning kommer utrustas med solceller och värmepumpar vid renovering. I dagsläget är fjärrvärme (FJV) den vanligaste energikällan i flerbostadshus. I detta examensarbete undersöks med hjälp av simuleringar i PVsyst (Photovoltaic systemsimulation software), ett kombinerat system med FJV, frånluftsvärmepump (FVP) och solceller i ett flerbostadshus ur en ekonomisk synvinkel. En känslighetsanalys på inköpspriser och priser på såld solel görs på uppdrag av bostadsföretaget AB Stora Tunabyggen. Syftet är att ge svar på när det är lönsamt att enbart använda FJV till fastigheten i Borlänge, jämfört med en kombination av FVP och FJV. Det är fyra scenarion som simuleras. Det första scenariot simulerar enbart FJV med solceller och fastighetens elbehov utan FVP. Det andra och tredje scenariot simulerar en FVP med solceller och värmefaktor 2,5 respektive 3,0 med fastighetens totala elbehov. Det fjärde scenariot är identiskt med scenario 2 (S 2), men med tidsstyrning. Valet av värmefaktor är den största felkällan, där beräknade värmefaktorer för år 2021 för fastigheten använts som utgångspunkt. Solelen som används av fastigheten har antagits vara gratis,vilket talar till FVP nackdel om egenanvänd solel i stället påförts en kostnad. Resultatet bygger på jämförelser av totala kostnader för fastighetens energi, där scenario 1 (S 1) med FJV jämförs med scenario 2–4. I perioden juni – augusti är det fördelaktigt med FJV oavsett priser på el, då fjärrvärmepriser är låga och såld solel gör det lönsamt. För övriga månader, påverkar kostnaden för inköp av el brytpunkten mest, som varierar mellan 0,5 – 1,3 kr/kWh (exkl. moms, skatt och elnätsavgifter) beroende på scenario och månad. Anledningen är att överproduktionen är liten i förhållande till inköpt energi i scenario 2 – 4 dessutom är grundkostnaden för inköpt el högre med elnätsavgifter och skatter. Slutsatsen ur ekonomisk synvinkel, är att byggnaden bör använda FJV juni – augusti. Övriga månader kan AB Stora Tunabyggen titta på resultatet av känslighetsanalysen och välja ett scenario som bedöms troligt.
752

Self Service Customer Support of Electric Vehicle Charging Stations / Stödsystem för kundstyrd felsökning av laddstationer för elfordon

Högberg, Tomas January 2020 (has links)
The aim of this master thesis is to develop a suggested methodology for how to use Mavenoid infrastructure to improve customer support of DEFA EV chargers. Mavenoid is a company that helps other companies automate customer support, especially troubleshooting. This is done with Mavenoid models, interactive selfhelp tools that guide end users without technical knowledge through the troubleshooting process. Mavenoid models provide value both by deflecting cases (the end user solves the problem on their own using the model) and triaging cases (collect relevant information about the problem before escalating the case to a human support agent) The main methodology to develop a suggested methodology was learning by doing, using the suggested methodology to actually implement Mavenoid models available to end users on DEFA’s home page. This was complemented with a literature review, interviews and data analysis from model usage. The suggested methodology is to iteratively follow the steps of deciding which models to build, make priorities within these models, build the models, analyze their performance and continuously improve the models. To decide models, carefully evaluate DEFA’s support situation to decide where Mavenoid models would have the greatest impact. Force yourself to make quantitative assumptions to estimate a payback time for each possible model. For each model, carefully prioritize what to include and where the focus should be using estimates of frequency, value and time to model. Build the models to maximize deflection and triage and minimize abandoned sessions. Collect and analyze data from model usage and use this information to improve the models. To prioritize between possible improvements, force yourself to make quantitative assumptions of value and time to model and rank improvements by payback time. Limit the improvements you make either by time available or desired payback time. The potential business opportunity between Mavenoid and its customers is more attractive the more support cases the customer has and the larger fraction of end users that use Mavenoid. The business opportunity varies greatly with assumptions that are very difficult to estimate accurately at the early stages of a Mavenoid implementation. This indicates that Mavenoid models should be implemented step by step and assumptions updated when more data is available. Implementing Mavenoid models can be both positive and negative from a sustainable development perspective. They could encourage people to repair products instead of replacing them, scale renewable energy technology faster and remove boring and repetitive tasks from support staff. On the other hand, they might not be appreciated by all end users, could lead to increased electricity consumption and potential unemployment for support staff. Being about a largely unresearched topic, the results in this thesis are relatively subjective. This suggested methodology was used and proved to work to implement Mavenoid models for DEFA EV charging stations but it should be seen as one possible methodology, not the confirmed best methodology. / Syftet med detta examensarbete är att utveckla en metodologi för hur Mavenoids teknologi kan användas till att förbättra kundsupporten för DEFAs elbilsladdare. Mavenoid är ett företag som hjälper andra företag att automatisera kundsupport, särskilt felsökning. Detta görs med Mavenoidmodeller, interaktiva självhjälpsverktyg som guidar slutanvändare utan teknisk kunskap genom felsökningsprocessen. Mavenoidmodeller ger värde både genom att slutanvändaren löser problemet på egen hand genom att använda modellen (deflection) och genom att samla relevant information om problemet innan ärendet eskaleras till teknisk support (triage). Den huvudsakliga metoden för att utveckla metodologin var att lära genom att göra, faktiskt implementera Mavenoidmodeller och göra de tillgängliga för slutanvändare på DEFA: s hemsida. Detta kompletterades med en litteraturöversikt, intervjuer och dataanalys av hur modellerna användes. Den föreslagna metodologin är att iterativt följa stegen besluta vilka modeller som ska byggas, prioritera inom dessa modeller, bygga modellerna, analysera data från dem och kontinuerligt förbättra modellerna. För att bestämma modeller, utvärdera DEFAs supportsituation noggrant för att bestämma var Mavenoid-modellerna skulle ha störst inverkan. Tvinga dig själv att göra kvantitativa antaganden för att uppskatta en återbetalningstid för varje möjlig modell. För varje modell ska du noggrant prioritera vad du ska inkludera och var fokus ska vara genom att använda uppskattningar av frekvens, värde och tid att modellera. Bygg modellerna för att maximera deflection och triage och minimera övergivna sessioner. Samla och analysera data från modellerna och använd denna information för att förbättra modellerna. För att prioritera mellan möjliga förbättringar, tvinga dig själv att göra kvantitativa antaganden om värde och tid att modellera och rangordna förbättringar efter återbetalningstid. Begränsa de förbättringar du gör antingen utifrån tillgänglig tid eller önskad återbetalningstid. Den potentiella affärsmöjligheten mellan Mavenoid och dess kunder är mer attraktiv ju fler supportärenden kunden har och ju större andel slutanvändare som använder Mavenoid. Affärsmöjligheten varierar kraftigt med antaganden som är mycket svåra att uppskatta i början av ett projekt att implementera Mavenoidmodeller. Detta indikerar att Mavenoidmodeller bör implementeras steg för steg och antaganden uppdateras när mer data finns tillgängligt. Implementering av Mavenoid-modeller kan vara både positivt och negativt sett till hållbar utveckling. De kan uppmuntra människor att reparera produkter istället för att byta ut dem, skala upp förnybar energiteknologi snabbare och ta bort tråkiga och repetitiva uppgifter från teknisk support. Å andra sidan kanske de inte uppskattas av alla slutanvändare, kan leda till ökad elförbrukning och potentiell arbetslöshet för de som jobbar inom teknisk support. Eftersom examensarbetet handlar om ett relativt outforskat ämne är resultaten relativt subjektiva. Denna föreslagna metodologi användes och visade sig fungera för att implementera Mavenoidmodeller för DEFAs elbilsladdare men den bör ses som en möjlig metodologi, inte den bekräftat bästa metodologin.
753

Comparative study of polygeneration systems for commercial buildings / Jämförelsestudie av polygenereringssytem för kommersiella byggnader

Karem, Agri, Kristiansson, Marcus January 2020 (has links)
In recent times the problems regarding global warming and climate change have become increasingly relevant in our society. Public attention is growing due to seemingly larger and more severe natural disasters each year and the search for solutions to these problems is greater than ever. Humanity is facing a lot of environmental challenges, but one could argue that the increasing rate of greenhouse gas emissions related to energy production and use is the main focus. This study focuses on how electricity generating and storage technologies can be installed for different types of buildings and businesses to maximize economic benefits and at the same time reduce dependency on grid bought electricity. The buildings in the analysis will have prior solar PV systems installed ranging from 35 kW to 254.8 kW in capacity. Three different buildings within this interval have been chosen and have the solar PV capacity of 35.84 kW, 143.36 kW and 254.8 kW. These buildings have been chosen to get three different load profiles that are as different as possible, given the available data. The study concludes that only using solar PV is the financially most profitable system configuration for all three buildings, rated by maximum IRR. Both wind power and batteries have a negative impact on IRR for all buildings. The building with the least changes in day-to-day peak demand benefited the most from solar PV. Wind power affects the demand in a similar way as solar PV, however batteries added more value to a building with a less consistent load curve. / På senare tid har problemen med global uppvärmning och klimatförändringar blivit alltmer relevanta i vårt samhälle. Allmänhetens uppmärksamhet växer på grund av till synes större och allvarligare naturkatastrofer varje år och sökandet efter lösningar på dessa problem är större än någonsin. Mänskligheten står inför många miljömässiga utmaningar, men det går att hävda att den ökande andelen växthusgasutsläpp relaterade till energiproduktion och användning är huvudfokus. Denna studie fokuserar på hur elproduktionens- och lagringsteknologier kan installeras för olika typer av byggnader och företag för att maximera ekonomiska fördelar och samtidigt minska beroendet av köpt el från elnätet. Byggnaderna i analysen har tidigare installerade solcellsanläggningar som sträcker sig från 35 kW till 254.8 kW. Tre olika byggnader inom detta intervall har valts och för dessa var solenergikapaciteten 35.84 kW, 143.36 kW och 254.8 kW. Dessa byggnader har valts för att få tre olika elförbrukningsprofiler som är så olika som möjligt med tanke på den tillgängliga datan. Studien drar slutsatsen att användningen av endast PV är den ekonomiskt est lönsamma systemkonfigurationen för alla tre byggnader, rankad efter maximal IRR. Både vindkraft och batterier påverkar IRR negativt för alla byggnaderna. Byggnaden med minst förändringar i det dagliga toppbehovet gynnades mest av solceller. Vindkraft påverkar elbehovet på liknande sätt som PV, men batterierna däremot gav mer värde till en byggnad med en förbrukningsprofil som var mindre konsekvent.
754

Analys av förutsättningar för solceller på industri i Skellefteå / Analysis of the conditions for solar panel installation on an industry building located in Skellefteå

Eriksson, Jonathan January 2022 (has links)
I denna rapport utvärderas lönsamheten hos en potentiell installation av solcellsmoduler på en industrilokal i Bureå strax utanför Skellefteå. Arbetet är utfört åt Pelimi Fastigheter AB i Skellefteå som är intresserade utav att energieffektivisera sina fastigheter, däribland Becurhuset som detta arbete innefattar. Ett energieffektiviseringsalternativ de är intresserade utav är huruvida en installation av en solcellsanläggning på dess takyta är både ekonomiskt och miljömässigt hållbart. Rapporten är utformad för att djupare undersöka solcellen och dess roll i ett hållbarare samhälle. Fokus ligger i att studera allt från solcellens uppbyggnad, både genom att förstå den fotovoltaiska effekten samt hur modulerna är strukturerade. Olika typer av de moderna solcellsmodulerna presenteras för att ge en bredare bild av vilken typ som är mest i framkant. Lagring av överskottsproducerad el från solenergi blir vanligare och utvecklas ständigt. Olika lagringsalternativ beskrivs i denna rapport för att klargöra vilket alternativ som skulle fungera bäst vid en modern solcellsinstallation. Med avseende på att undersöka lönsamheten för en solcellsinstallation har simuleringar och beräkningar utförts på fyra alternativa lösningar. Detta för att hitta en optimerad lösning gällande elproduktion, investeringskostnad, återbetalningstid och effektivitet. De fyra alternativen skiljer sig gällande lutning, riktning och placering. De alternativ som är bäst lämpade på grund av byggnadens placering och orientering är alternativ 1 och alternativ 2, som är det bästa alternativet av de undersökta utformningarna. Alternativ 1 innefattar öst-/västriktade moduler med en lutning på 10° och azimutvinklar på 74° kontra -106° från syd medan alternativ 2 innefattar sydostriktade moduler med en lutning på 15° och en azimutvinkel på -16° från syd. Alternativ 1 är effektivt på grund av dess minimala skuggpåverkan från omringande material och andra moduler samt en minskad snöpåverkan. Det är det bäst lämpade alternativet för solelproduktion med egenanvändning i åtanke. Det har dock det lägsta energiutbytet första året på 755,23 kWh/kWp på grund av dess minskade effektivitet orsakat av dess riktningar kontra resterande alternativs energiutbyten på 864,12 kWh/kW (alternativ 2), 846,25 kWh/kW (alternativ 3) respektive 970,32 kWh/kWp (alternativ 4). Alternativet genererar dock stadigt energi över året med lite överskottsproduktion under sommarhalvåret. Alternativ 2 har ett högre energiutbyte första året än alternativ 1. Det är även det billigaste alternativet investeringsmässigt och har även den kortaste återbetalningstiden på 11 år med en intern ränta på 11,4% till skillnad från de andra alternativen som har återbetalningstider på 13 år och över 25 år vilket är längre än solpanelens garanterade livstid. / This report examines the profitability of a future installation of solar panels on the roof of an industrial building located in Bureå, outside Skellefteå. The work has been executed for Pelimi Fastigheter AB, who are interested in making their premises more energy efficient. This work includes their building Becurhuset. The energy efficiency alternative they are interested in is whether the installation of a photovoltaic system is both economically and environmentally sustainable. This report is designed with an aim to dig deeper into the characteristics of the solar cell and its role in a more sustainable society. The focus is on studying the structure of the solar cell, both by understanding the photovoltaic effect and the structure of the modules. Different types of modern photovoltaic modules are presented and compared to broaden the picture of which type is most at the forefront of the alternatives. Storing surplus-produced solar power is becoming more common whilst constantly evolving. Different storage alternatives are compared to understand which alternative would work best in a modern solar panel installation. Simulations and calculations have been made on four different alternative solutions to examine the profitability of a solar panel installation. This is to find an optimized solution regarding electricity production, investment cost, pay-back time and effectivity. The four alternatives differ in terms of its slope, direction, and location.  The best suggestions based on the buildings location and orientation is alternative 1 and alternative 2, which is the best alternative of the examined designs. Alternative 1 consists of east-/west directed modules with an inclination of 10° and an azimuth angle of 74° and -106° directed from south, whilst alternative 2 consists of southeast directed modules with an inclination of 15° and an azimuth angle of -16° directed from south. Alternative 1 is effective mostly due to its minimal impact from surrounding objects and modules shadows and a minimized impact from snow. It’s the best suited alternative with personal usage of solar production in mind. However, it does limit itself with the lowest energy exchange of 755,23kWh/kWp versus the other alternatives of 864,12 kWh/kW (alternative 2), 846,25 kWh/kW (alternative 3) and 970,32 kWh/kWp (alternative 4), mostly due to its modular directions. This alternative has a steady production of solar power over the year with a bit of surplus production during the summer solstice.  Alternative 2 has a higher energy exchange the first year versus alternative 1. It’s also the cheapestalternative investment-wise of the four and has the shortest payback time of 11 years with an internal rate of 11,4%. The other alternatives have resulting pay back times of 13 and 25 years which is longer than the solar panels guaranteed lifecycle.
755

Elbussar i Örnsköldsvik : En analys över vad som krävs för att elektrifiera bussarna i tätortstrafiken i Örnsköldsvik. / Electric buses in Örnsköldsvik

Abrahamsson, Max January 2022 (has links)
For Sweden to achieve its environmental goals by 2045, municipalities need to reducegreenhouse gas emissions, especially from from the transport sector. Recentmeasurements in Örnsköldsvik have shown poor quality air in the built-up environment.Buses are the vehicle classes that emit, proportionally the most carbon dioxide equivalentgases. The intention is to replace the current city buses with electric vehicles to take asignificant step on the road to zero emissions.When electric buses are planned for a city traffic implementation, you must first establishwhat kind of electric buses you want to use. In Örnsköldsvik, the most relevant alternativestoday are either depot-charged or additional-charged buses.Which of the bus types that the municipality chooses to implement will affect themdifferently. If they choose depot-charged buses, the vehicles will be more expensive, but itwill not be necessary to add as much infrastructure and the circulation plan will not be asaffected as in the other case. In addition, some of the lines are too long to run all day, atsome point during the day a depot-charged bus must be run empty back to the depot to bereplaced by a charged bus. If additional-charging is chosen, the infrastructure will be moreexpensive (though fixed infrastructure has a low total cost compared to the cost of thevehicles as these have a longer depreciation period) and the circulation plan will need somechanges so that the buses have time to charge for a few minutes at the end stops.With current electric bus technology, electric buses should work in Örnsköldsvik’s urbanarea. Most with depot charging, some lines may need additional charging. Minimumrecommendations are made for the depot size, location and electric effect needed. Also,recommendation of piloting with 6 busses rather than taking a “Big bang” approach toimplementation to gain experience. / För att Sverige ska nå miljömålen till 2045 så måste kommunerna sänka på utsläppen fråntransportsektorn. I Örnsköldsviks kommun mäts luftkvalitén inne i staden kontinuerligtmed dåliga värden som resultat och bussarna är de som släpper ut störst andel koldioxidekvivalenta gaser. Nu planeras en ersättning av de nuvarande bussarna med elbussar föratt komma en bit på vägen mot nollutsläpp.När elbussar planeras att börja användas i stadstrafiken så måste man planera vilken sortselbussar som man vill använda. I Örnsköldsvik är de mest relevanta alternativen idagantingen depåladdade eller tilläggsladdade bussar.Vilken av busstyperna som kommunen väljer att implementera kommer påverka dom liteolika. Väljer dom depåladdade bussar kommer fordonen bli dyrare men det kommer intebehövas läggas till lika mycket infrastruktur och omloppsplaneringen kommer inte bli likapåverkad som i det andra fallet. Förutom att vissa av linjerna är för långa för att köra heladagen så någon gång måste bussen köras tom till depån för att bytas mot en laddad buss.Väljs tilläggsladdning så kommer infrastrukturen bli dyrare (fast infrastruktur har en lågtotal kostnad jämfört med fordonens kostnad då dessa har längre avskrivningstid) ochomloppsplaneringen kommer behöva ändras för att bussarna ska få tid för att ladda någraminuter vid ändhållplatserna.Med nuvarande elbussteknologi skulle elbussar kunna fungera i Örnsköldsviks tätort. Deflesta linjer klarar sig med endast depåladdning, några linjer kan behöva tilläggsladdning.Det har givits rekommendationer för en ny depås placering, storlek och eleffekten sombehövs levereras dit. Dessutom rekommenderas ett pilotprojekt med 6 elbussar istället föratt ”slå på stort” för att skaffa mer erfarenhet innan full implementering.
756

Solar Pool Heating at Obbola School : A pilot study about performance evaluation of different solar thermal collectors and their long-term economic benefits for Umeå Municipality / Solvärme till Obbola skolan : En förstudie om prestandautvärdering av olika solfångare och deras långsiktiga ekonomiska lönsamhet för Umeå kommun

Tekle, Tekie January 2022 (has links)
This pilot study aims to evaluate the thermal performance of different types of solar thermal collectors and their long-term economic benefits for Obbola school, located within the Umeå municipality. The goal of this project is to investigate how much thermal and electrical energy can be generated annually and even during summertime by using only solar collectors for heating purposes of an outdoor pool at Obbola school. The solar thermal collectors that are selected for this project are Solar Keymark-certified flat plate, evacuated tube, and photovoltaic hybrid solar collectors. This study will include designing and simulation roof-integrated and ground-based collectors in Polysun software and determine their thermal performance at European Standards of 45° and collectors facing true south. The simulations in Polysun were conducted on the main site roof area of 65 m2 and a steep grass area of 66 m2 behind the main roof.This pilot study shows that only during the summertime, between the 1st of May and the 31st of August, flat and evacuated tube solar collectors can generate between 4.5 - 5.1% of the school's annual average thermal energy needs. The total average generated thermal energy by these collectors during a year is about 20800 kWh. A hybrid solar collector's thermal energy generated during the summertime covers only 0.6% of 400215 kWh, the annual average thermal energy the school needs. At the same time, the generated electricity will cover only 1.2% of the average electricity the Obbola school needs, which is 539600 kWh.Some economic analyses were conducted to evaluate the long-term economic benefits of installing solar thermal collectors for Umeå municipality, including payback period, life cycle profit, annuity, and life cycle costs. The payback period results show that these collectors have between 9 to 20 years of returning their initial investment. This economic analysis was based on the collector's service life between 25 to 40 years, depending on the brands and manufacturers. These collectors' average life cycle profit revenue is between 178816 SEK and 294415 SEK after 25 and 40 years, respectively. This profit margin makes it very attractive for Umeå municipality, and this model can be used for further implementation at other schools within the municipality. The annual annuity revenue from these collectors is 10269 SEK to 12737 SEK after 25 and 40 years of service, respectively. The results from the return-on-investment show that the installation will give about a percentage profit of 2.8% to 3.5% between 25 and 40 years, respectively. These collectors' average life cycle costs over 25 and 40 years are 358094 SEK and 677231 SEK, respectively. According to the economic analyses, the results show that this pilot study will be a very profitable investment for the Umeå municipality.
757

Horizontal wastewater heat recovery heat exchanger, a model

Nyholm, Joakim January 2019 (has links)
The residential and service sector amounts to approximately 40 percent of Sweden’s entire energy demand. In which 90 percent of that is used by households and non-residential buildings. All in all about 80 TWh are used for heating and the provision of hot water in households and non-residential buildings. Since heating has always been such a large part of the energy consumption for buildings in Sweden, it is only natural that there have been several improvements along the way. There’s a new facility just installed last year in the building Pennfäktaren 11, a horizontal wastewater heat recovery heat exchanger. This thesis study will be focused on creating a TRNSYS model of a waste water heat exchanger, where the crucial parameters such as water flow rate, temperature, and more can be used as inputs to assess the technical performance of the heat exchanger. The model developed in TRNSYS can simulate the performance of a single heat exchanger unit, with a few input parameters needed. The model was developed by using measurement data from the facility in Stockholm to get realistic results depending on time and actual measurements. From the measured data, there were a few parameters that needed to be calculated, first off the mass flow rate of the waste water flow, this was done by an energy balance over the heat exchanger. Following the mass flow rate the cold water set point had to be determined, so that the heat recovered was not larger than the heat that could be utilized by the building. Since data was available from a single site, there was not much else to do than accept the data as true, there were some data points that had to be sorted out however, such as negative flow rates and flow rates much higher than should be possible. The finished model uses all the data from the measurements as well as the calculated values, it provided heat transfer rate along with the outgoing temperatures of both waste water and the preheated water. The first reference scenario provided 25,3 MWh of recovered energy, but the best scenario with an increased waste water temperature as well as increased flow rate it could provide a total of 47,2 MWh, almost twice the original value. To conclude the model seems to simulate a waste water heat exchanger well and returns feasible data. It should be possible to use the model to see if a building is a good “candidate” to install a waste water heat exchanger in. / Byggnads och servicesektorn står för cirka 40 procent av Sveriges energibehov. Av de 40 procenten består 90% av energibehov ifrån hushåll och kontorsbyggnader. Totalt sett 80 TWh används för uppvärmning av byggnader samt varmvatten. Då uppvärmning alltid varit en stor del av energibehovet i Sverige är det naturligt att det skett en rad förbättringar på vägen. Det finns en ny anläggning på Pennfäktaren 11 i Stockholm, en horisontell värmeväxlare för avloppsvatten. Den här uppsatsen fokuserar på att skapa en modell i TRNSYS av en värmeväxlare där parametrar som vattenflöde, temperatur, och mer kan användas för att bedöma den tekniska aspekten av en installation av värmeväxlare i en byggnad. Modellen kan simulera prestandan av en ensam värmeväxlare, med endast ett fåtal parametrar som behövs. Modellen baseras på mätdata ifrån anläggningen på Pennfäktaren, denna mätdata har sedan använts för att beräkna först massflödet av avloppsvatten men också för att bestämma hur mycket värme som är möjligt att återvinna utan att överskrida det byggnaden faktiskt kan använda. Då det bara finns data ifrån en källa fick den anses som korrekt, dock gjordes en del ändringar där data helt enkelt var omöjligt, t.ex. negativa avloppsflöden och flödesmängder så höga att de inte ska kunna vara möjliga. Den färdiga modellen använder mätdata tillsammans med de beräknade värdena. Detta används för att genom modellen beräkna temperaturvärden för utgående vatten och avlopp samt den totala mängden återvunnen värme. I referensscenariot kunde totalt 25,3 MWh värme återvinnas men det bästa scenariot med ökad avloppstemperatur och avloppsflöde kunde närmare 47,2 MWh återvinnas, nästan det dubbla från referensvärdet. För att sammanfatta ger modellens simulationer rimliga värden för värmeväxlaren. Det bör därför vara fullt möjligt att använda modellen för att bedöma ett hus rimlighet till en värmeväxlarinstallation.
758

Life cycle assessment of a new and a renovated building

Holmbom, Emil January 2022 (has links)
Ever since the Swedish government declared their long-term goal of net zero greenhouse gas emissions by 2045, the importance of life-cycle assessments (LCA) in the building sector has increased. In 2018 the building sector in Sweden was responsible for 21% of all emissions. The first step of reducing carbon emissions is done by declaring its origins, which is where LCAs are helpful. An LCA include all CO2 emissions emitted within a products lifespan, all the way from raw material acquisition to the end of life. It is divided into different phases according to the European standard EN 15978 and the purpose of an LCA is to determine how much emissions each individual phase accounts for and then determine where the biggest improvements can be made. In this thesis an LCA of a new building is compared to an LCA of a renovated building in order to determine whether or not it is more environmentally friendly to renovate a building. The LCAs in this thesis was done using the web-based software One Click LCA and the life-cycle phases A-B were analysed. A case study was made on the multifamily buildings in Umeå, Sweden with the help of detailed drawings. The major interests of this report has been to get more knowledge in how to perform LCAs and to see whether a renovation of a building results in lower emissions as compared to a new building. The results showed that the new building had about 23% more CO2e emissions per m2 than the renovated building for a lifespan of 60 years when using a Swedish energy mix, where the renovated building's emissions was 345kg CO2e/m2 and the new building's emissions was 425.4kg CO2e/m2. The embodied carbon was about 2.5 times higher for the new building compared to the renovated building and the energy use B6 for the new building accounted for 33.2% of the total CO2 emissions while it was 72.3% of the renovated building's total emissions. When the lifespan was increased the new building became a more and more attractive alternative and it would've surpassed the renovated building soon after 100 years as the more environmental friendly choice.
759

Investigation of secondary flow in low aspect ratio turbines using CFD

Orsan, Henrik January 2014 (has links)
In this thesis, secondary flow in a two stage, low aspect ratio turbine is investigated using CFD. A parameter study is carried out to investigate how the turbine performance is affected by the choice of aspect ratio. This is done in two steps, first by changing the blade height and then the blade size. The study shows that increasing the aspect ratio will lead to a significant increase of efficiency, but the effect diminishes for large aspect ratios, at which the efficiency moves towards an asymptotic value. Furthermore it is shown that increasing the aspect ratio to a certain value by changing the blade height results in a higher efficiency compared to changing the blade size, which is due to the difference in hub-to-tip ratio. An attempt to quantify the secondary losses is also made by looking at the radial kinetic energy at the outlet of a blade row. It turns out though, that the radial kinetic energy does not follow the same trend as the total pressure loss coefficient, which implies that it can not be used to quantify the secondary losses. Lastly, an effort to improve the method used for generating blade profiles is made, and the updated method is used to redesign rotor 2 to reduce losses.
760

Energieffektivisering av Alléskolan i Floda

Saade, Jeanpierre, Eskander, Aboud January 2023 (has links)
No description available.

Page generated in 0.0686 seconds