• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 17
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 150
  • 31
  • 19
  • 19
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

ECO-FRIENDLY HYDRAULIC DESIGN OF IN-GROUND STILLING BASIN FOR FLOOD MITIGATION DAMS / 環境に配慮した洪水調節用流水型ダムの潜り跳水式減勢工の水理設計

Mohammad Ebrahim Meshkati Shahmirzadi 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17877号 / 工博第3786号 / 新制||工||1579(附属図書館) / 30697 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 角 哲也, 教授 牛島 省, 准教授 竹門 康弘, 准教授 Sameh Ahmed Kantoush / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
82

Development of Steel Shear Walls Capable of Structural Condition Assessment by Using Double-Tapered Links / 健全性判定が可能なテーパーリンク付き鋼板耐震壁の開発

He, Liusheng 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18977号 / 工博第4019号 / 新制||工||1619(附属図書館) / 31928 / 京都大学大学院工学研究科建築学専攻 / (主査)教授 中島 正愛, 教授 金子 佳生, 教授 吹田 啓一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
83

On the Entropy Rise in General Unducted Rotors using Momentum, Vorticity and Energy Transport

Siddappaji, Kiran 29 October 2018 (has links)
No description available.
84

The Development of a Steel Fuse Coupling Beam for Hybrid Coupled Wall Systems

Mitchell, Steven J. 10 October 2013 (has links)
No description available.
85

An Effective Damping Measure: Examples Using A Nonlinear Energy Sink

Ott, Richard J. 20 December 2012 (has links)
No description available.
86

Estimated Instability and Breaking of Internal Waves due to Time-dependent Shear

Latorre, Leonardo A. 14 March 2012 (has links) (PDF)
The effects of propagation of a short internal gravity wave through an inertia wave on internal wave stability is analyzed and parameterized. The interactions are specifically between a short wave packet and a large inertia wave packet. The short wave packet is a wave bounded with a Gaussian envelope with high frequencies and scales in the hundreds of meters horizontally and tens of meters vertically. The inertia wave packet is also an enveloped wave but with frequencies close to the rotation of the earth and scales in the thousands of meters in the horizontal and hundreds of meters in the vertical. The wave-wave interactions are modeled using ray theory and 2d non-linear numerical models. Ray tracing is used because it is less computationally expensive, however it fails at regions of strong refraction also known as caustics. To measure stability the steepness is calculated from the 2d non-linear methods and it is compared with estimates found in the linear theory. It is determined that the estimates of the short wave steepness from linear theory are qualitatively comparable. A quantifiable comparison, although more difficult, resulted in adjustment factors to the ray tracing results. It is also found that for the particular cases modeled, convective instabilities are predominant and the influence of the shear exerted by the large inertia wave is insignificant. Instability time scales are included in the stability analysis and estimates of overturning and wave-breaking are developed for different wave-wave interactions. From the stability analysis it is found that in general the faster the short wave propagates the more likely it is to conform to both of the conditions required for wave breaking (i.e presence of instabilities and instability time scales longer than the timescale of the short wave).
87

Development, Analysis and Testing of a Hybrid Passive Control Device for Seismic Protection of Framed Structures

Marshall, Justin D. 09 January 2009 (has links)
A new seismic protection strategy called the hybrid passive control device (HPCD) has been developed which combines typical passive energy dissipation devices. It consists of a high damping rubber (HDR) sandwich damper in series with a buckling restrained brace (BRB). The HPCD provides energy dissipation at small deformations without significantly decreasing the structural period. The significant energy dissipation capacity of a BRB is provided for significant seismic events in the second phase. The transition between these two phases consists of an increasing stiffness as the device transitions from rubber damper to BRB. The HPCD reduces deformations, forces and accelerations from seismic events. The hyperelastic or stiffening effect also prevents resonant build-up and aids in collapse prevention due to p-delta effects. The first phase of this work included characterization of high damping rubber compounds and analytical modeling of the HPCD concept. Experimental testing was completed to measure both the static and dynamic material properties of six different rubber compounds. The two most promising rubber compounds were selected for possible inclusion in the device. Analytical models of these selected materials were developed for nonlinear solid finite element analysis. The most promising configuration of the device was selected from several options. The selected configuration was analyzed using the commercial finite element program ABAQUS. These models were used to confirm the validity of the theoretical behavior of the device. Additionally these tests were used to determine which of the rubber compounds performed best. Experimental testing of a half-scale HPCD specimen was carried out in the Structures and Materials Research Laboratory at Virginia Tech. The prototype was tested under cyclic and static loads. The experimental tests confirmed the potential of the hybrid device while highlighting minor issues with the design of the prototype. The final component in the research was an analytical study using hybrid devices in a 9-story steel moment frame structure. The devices were found to provide improved response over a special steel moment frame and a moment frame combined with a buckling restrained brace frame. / Ph. D.
88

Development of a Flexural Yielding Energy Dissipation Device for Controlled Rocking Masonry Walls

Li, Jeff (Jie Fei) January 2019 (has links)
Steel flexural yielding arms can be an effective energy dissipation device for several seismic force resisting systems, including controlled rocking masonry walls. In controlled rocking masonry walls, uplift of the wall from the foundation is allowed in a way that can localize damage and minimize post-earthquake residual drifts. However, along with other modes of failure, sliding of the rocking walls can increase drifts and damage if not adequately addressed. Controlled rocking systems have different alternatives to prevent sliding, which include the use of additional mechanical components (e.g. metal stoppers) at the corners to resist lateral forces while allowing the wall rocking motion. However, these mechanical components hinder the constructability of the wall in some cases. The use of an energy dissipation device (i.e. steel flexural yielding arm) to also prevent the wall sliding mechanism has not been fully explored to date. The development of an easily replaceable energy dissipation device with the ability to simultaneously resist sliding demands is expected to maintain the overall performance of controlled rocking masonry walls, while also enhancing post-earthquake repairability. The objective of the current study is to experimentally investigate the effect of axial forces on the behaviour of steel flexural yielding arms under cyclic loading. In this respect, the study first presents a description of the experimental program, test setup, and instrumentation. Next, the experimental results of the tested specimens are discussed in terms of the effect of axial forces on the load, displacement, and energy dissipation capacities of the tested devices. Finally, new design equations that account for axial forces are proposed and verified against the experimental data along with a finite element model. Based on the results, recommendations are given for the further development of externally attached and replaceable flexural yielding arms for controlled rocking masonry walls. / Thesis / Master of Applied Science (MASc) / Controlled rocking masonry walls can be a cost-efficient alternative to traditional masonry shear walls because of their enhanced performance, specifically to reduce and localize structural damage induced by seismic loads. However, a controlled rocking wall requires additional energy dissipation devices or post-tensioning techniques to compliment the rocking wall to achieve the desired performance. This thesis explores and improves a type of energy dissipation device for controlled rocking masonry walls and aims to provide detailed design specifications for professional engineers. A design and considerations from previous studies are discussed, followed by the experimental validation, and finally new design equations are proposed for this type of reliable, flexural energy dissipation device.
89

Large-Scale Cyclic Testing and Development of Ring Shaped - Steel Plate Shear Walls for Improved Seismic Performance of Buildings

Phillips, Adam Richard 28 November 2016 (has links)
A novel shear wall system for building structures has been developed that improves upon the performance of conventional steel plate shear walls by mitigating buckling. The new structural system, called the Ring Shaped - Steel Plate Shear Wall, was investigated and developed through experimental and computational methods. First, the plastic mechanism of the system was numerically derived and then analytically validated with finite element analyses. Next, five large-scale, quasi-static, cyclic experimental tests were conducted in the Thomas M. Murray Structures Laboratory at Virginia Tech. The large-scale experiments validated the system performance and provided data on the boundary frame forces, infill panel shear deformation modes, buckling mode shapes, and buckling magnitudes. Multiple computational modeling techniques were employed to reproduce different facets of the system behavior. First, detailed finite element models were constructed to accurately reproduce the cyclic performance, yielding pattern, and buckling mode shapes. The refined finite element models were utilized to further study the boundary element forces and ultra-low cycle fatigue behavior of the system. Second, reduced-order computational models were constructed that can accurately reproduce the hysteretic performance of the web plates. The reduced-order models were then utilized to study the nonlinear response history behavior of four prototype building structures using Ring Shaped - Steel Plate Shear Walls and conventional steel plate shear walls. The nonlinear response history analyses investigated the application of the system to a short period and a long period building configuration. In total 176 nonlinear response history analyses were conducted and statistically analyzed. Lastly, a practical design methodology for the Ring Shaped - Steel Plate Shear Wall web plates was presented. The experimental tests and computational simulations reported in this dissertation demonstrate that Ring Shaped - Steel Plate Shear Walls are capable of improving seismic performance of buildings by drastically reducing buckling and improving cyclic energy dissipation. / Ph. D.
90

Evaluating Shear links for Use in Seismic Structural Fuses

Farzampour, Alireza 28 January 2019 (has links)
Advances in structural systems that resist extreme loading such as earthquake forces are important in their ability to reduce damages, improve performance, increase resilience, and improve the reliability of structures. Buckling resistant shear panels can be used to form new structural systems, which have been shown in preliminary analysis to have improved hysteretic behavior including increased stiffness and energy dissipating ability. Both of these characteristics lead to reduced drifts during earthquakes, which in turn leads to a reduction of drift related structural and nonstructural damage. Shear links are being used for seismic energy dissipation in some structures. A promising type of fuse implemented in structures for seismic energy dissipation, and seismic load resistance consists of a steel plate with cutouts leaving various shaped shear links. During a severe earthquake, inelastic deformation and damage would be concentrated in the shear links that are part of replaceable structural fuses, while the other elements of the building remain in the elastic state. In this study, by identifying the issues associated with general fuses previously used in structures, the behavior of the links is investigated and procedures to improve the behavior of the links are explained. In this study, a promising type of hysteretic damper used for seismic energy dissipation of a steel plate with cutouts leaving butterfly-shaped links subjected to shear deformations. These links have been proposed more recently to better align bending capacity with the shape of the moment diagram by using a linearly varying width between larger ends and a smaller middle section. Butterfly-shaped links have been shown in previous tests to be capable of substantial ductility and energy dissipation, but can also be prone to lateral torsional buckling. The mathematical investigations are conducted to predict, explain and analyze the butterfly-shaped shear links behavior for use in seismic structural fuses. The ductile and brittle limit states identified based on the previous studies, are mathematically explained and prediction equations are proposed accordingly. Design methodologies are subsequently conceptualized for structural shear links to address shear yielding, flexural yielding and buckling limit states for a typical link subjected to shear loading to promote ductile deformation modes. The buckling resistant design of the links is described with the aid of differential equations governing the links' buckling behavior. The differential equations solution procedures are developed for a useful range of link geometries and the statistical analysis is conducted to propose an equation for critical buckling moment. Computational studies on the fuses are conducted with finite element analysis software. The computational modeling methodology is initially verified with laboratory tests. Two parametric computational studies were completed on butterfly-shaped links to study the effect of varying geometries on the shear yielding and flexural yielding limit states as well as the buckling behavior of the different butterfly-shaped link geometries. It is shown that the proposed critical moment for brittle limit state has 98% accuracy, while the prediction equations for ductile limit states have more than 97% accuracy as well. Strategies for controlling lateral torsional buckling in butterfly links are recommended and are validated through comparison with finite element models. The backbone behavior of the seismic butterfly-shaped link is formulized and compared with computational models. In the second parametric study, the geometrical properties effects on a set of output parameters are investigated for a 112 computational models considering initial imperfection, and it is indicated that the narrower mid-width would reach to their limit states in lower displacement as compared to wider mid-width ones. The work culminates in a system-level validation of the proposed structural fuses with the design and analysis of shear link structural fuses for application in three buildings with different seismic force resisting systems. Six options for shear link geometry are designed for each building application using the design methodologies and predictive equations developed in this work and as guided by the results of the parametric studies. Subsequently, the results obtained for each group is compared to the conventional systems. The effect of implementation of the seismic links in multi-story structures is investigated by analyzing two prototype structures, with butterfly-shaped links and simple conventional beam. The results of the nonlinear response history analysis are summarized for 44 ground motions under Maximum Considered Event (MCE) and Design Basic Earthquake (DBE) ground motion hazard levels. It is shown that implementation of the butterfly-shaped links will lead to higher dissipated energy compared to conventional Eccentrically Braced Frame (EBF) systems. It is concluded that implementation of the seismic shear links significantly improves the energy dissipation capability of the systems compared to conventional systems, while the stiffness and strength are close in these two systems. / Ph. D. / Structural fuses are replaceable elements of a structure that are designed to yield and protect the surrounding members from damages, and then be accessible and replaceable after a major event. Several studies have indicated that steel plates with cutouts would have advantages for use in structural fuses. Having cutouts in a steel plate would make different shapes inside of the plate, which are called structural links. To have the same yielding condition all over the links, it is tried to better align the capacity of the links with the shape of the demand diagram caused by loading, which would be leading to the efficient implementation of the steel. In general, links are implemented to substantially increase the energy dissipation capacity of a structure and significantly reduce the energy dissipation demand on the framing members of a structure. For these purposes, various shapes have been proposed in this research study. The main feature of a replaceable link system is that the inelasticity is concentrated at the steel link while the beams and columns remain almost elastic. This study investigated the general behavior of the fuses, the applicability of them for space-constrained applications, the flexure, shear and buckling limit states affecting the behavior of the links. The computational analysis methodologies to model the links are explained and confirmed with the behavior of the different experiment tests as well as the proposed brittle limit state prediction equations. Subsequently, the two parametric studies are done to investigate the effect of geometrical properties on the links output results and establish prediction equations. The results from the analytical and computational studies for the seismic links are incorporated for seismic investigation of multi-story buildings. The results of seismic analysis of the two buildings are summarized for 44 ground motions.

Page generated in 0.0954 seconds