• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 70
  • 69
  • 69
  • 69
  • 39
  • 27
  • 21
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Independent sets and closed-shell independent sets of fullerenes

Daugherty, Sean Michael 06 October 2009 (has links)
Fullerenes are all-carbon molecules with polyhedral structures where each atom is bonded with three other atoms and the faces of the polyhedron are pentagons and hexagons. Fullerene graphs model the fullerene structures and are cubic planar graphs having twelve pentagonal faces and the remaining faces are hexagonal. This work explores two models that seek to determine the maximum number of bulky addends that may bond to the surface of a fullerene. The first model assumes that any two bulky addends are too large to bond to adjacent carbon atoms. This is equivalent to finding a graph-theoretical maximum independent set: a vertex subset of maximum size such that no two vertices are adjacent. The problem of determining the maximum independent set order is NP-hard for general cubic planar graphs and the complexity for the fullerene subclass was previously unknown. By extending the work of Graver, a graph-theoretical foundation is laid then used to derive a linear-time algorithm for solving the maximum independent set problem for fullerenes. A discussion of the relationship between maximum independent sets and some specific families of fullerenes follows. The second model refines the first by adding an additional requirement that the resulting molecule is stable according to Hückel theory: the molecule exhibits a stable distribution of π electrons. The graph-theoretical description of this model is a maximum closed-shell independent set: a vertex subset of maximum size such that no two vertices are adjacent and exactly half of the eigenvalues of the adjacency matrix of the graph that results from the deletion of the vertex subset are positive. Computations for finding a maximum closed-shell independent set rely on determining whether fullerene subgraphs are closed-shell (satisfy the eigenvalue requirement) so a linear-time algorithm for finding the inertia (number of negative, zero, and positive eigenvalues) of unicyclic graphs is given. This algorithm is part of an exponential-time algorithm for finding a maximum closed-shell independent set of a fullerene molecule that is fast enough for practical use. An improved upper bound of 3n/8 + 3/2 for the closed-shell independence number is included.
172

MODELING AND SIMULATION OF AN AUTOMATED PARALLEL PARKING SYSTEM USING HYBRID PETRI NETS

Ramesh, Keerthanaa January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years, there have been a lot of technology innovations to automate the day to day processes done by every person. These days the automobile manufacturers introduce new features in their cars, in order to improve customer experience, like Adaptive cruise control, Parallel park assist, etc. The objective of this thesis is to model an automated parallel parking system and to simulate the system behavior, by taking into account the high level events which happen when a car is parallel parked. The tool used in this thesis to model and simulate the system is Hybrid Petri net (HPN), which is versatile to model the real life systems. Chapter 1 deals with a brief introduction of the related work in Hybrid Petri net modeling of real life systems, automatic parallel parking systems and how the concept for modeling the parallel parking system was developed. Chapter 2 deals with the general introduction about Discrete, Continuous and Hybrid Petri nets and their dynamics which are essential for understanding this thesis. Chapter 3 deals with the development of the model and the various stages in the model development. Errors encountered in each stage is briefly discussed and the improvements are discussed in the next stage of development. This chapter concludes with the final integrated model and operation of the model. Chapter 4 deals with the discussion of results obtained when the model is tested in MATLAB and SIMHPN (which is a Matlab embedded simulation program). The results are compared, the system behavior is observed and the purpose of the thesis is justified. In Chapter 5, a conclusion is provided to summarize the entire thesis.
173

Electric utility planning methods for the design of one shot stability controls

Naghsh Nilchi, Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability. Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets. To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used. The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability. Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology. It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.
174

Design optimization of heterogeneous microstructured materials

Emami, Anahita January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Our ability to engineer materials is limited by our capacity to tailor the material’s microstructure morphology and predict resulting properties. The insufficient knowledge on microstructure-property relationship is due to complexity and randomness in all materials at different scales. The objective of this research is to establish a design optimization methodology for microstructured materials. The material design problem is stated as finding the optimum microstructure to maximize the desired performance satisfying material processing constrains. This problem has been solved in this thesis by means of numerical techniques through four main steps: microstructure characterization, model reconstruction, property evaluation, and optimization. Two methods of microstructure characterizations have been investigated along with the advantages and disadvantages of each method. The first microstructure characterization method is a statistical method which utilizes correlation functions to extract the microstructural information. Algorithms for calculating these correlations functions have been developed and optimized based on their computational cost using MATLAB software. The second microstructure characterization method is physical characterization which works based on evaluation of physical features in microstructured domain. These features have been measured by means of MATLAB codes. Three model reconstruction techniques are proposed based on these characterization methods and employed to generate material models for further evaluation. The first reconstructing algorithm uses statistical functions to reconstruct the statistical equivalent model through simulating annealing optimization method. The second algorithm uses cellular automaton concepts to simulate the grain growth utilizing physical descriptors, and the third one generates elliptical inclusions in a material matrix using physical characteristic of microstructure. The finite element method is used to analysis the mechanical behavior of material models. Several material samples with different microstructural characteristics have been generated to model the micro-scale design domain of AZ31 magnesium alloy and magnesium matrix composite with silicon carbide fibers. Then, surrogate models have been created based on these samples to approximate the entire design domain and demonstrate the sensitivity of the desired mechanical property to two independent microstructural features. Finally, the optimum microstructure characteristics of material samples for fracture strength maximization have been obtained.
175

Solar Micro Inverter

Hegde, Shweta January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The existing topologies of solar micro inverter use a number of stages before the DC input voltage can be converted to AC output voltage. These stages may contain one or more power converters. It may also contain a diode rectifier, transformer and filter. The number of active and passive components is very high. In this thesis, the design of a new solar micro inverter is proposed. This new micro inverter consists of a new single switch inverter which is obtained by modifying the already existing single ended primary inductor (SEPIC) DC-DC converter. This new inverter is capable of generating pure sinusoidal waveform from DC input voltage. The design and operation of the new inverter are studied in detail. This new inverter works with a controller to produce any kind of output waveform. The inverter is found to have four different modes of operation. The new inverter is modeled using state space averaging. The system is a fourth order system which is non-linear due to the inherent switching involved in the circuit. The system is linearized around an operating point to study the system as a linear system. The control to output transfer function of the inverter is found to be non-minimum phase. The transfer functions are studied using root locus. From the control perspective, the presence of right half zero makes the design of the controller structure complicated. The PV cell is modeled using the cell equations in MATLAB. A maximum power point tracking (MPPT) technique is implemented to make sure the output power of the PV cell is always maximum which allows full utilization of the power from the PV cell. The perturb and observe (P&O) algorithm is the simplest and is used here. The use of this new inverter eliminates the various stages involved in the conventional solar micro inverter. Simulation and experimental results carried out on the setup validate the proposed structure of inverter.
176

A new adaptive trilateral filter for in-loop filtering

Kesireddy, Akitha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / HEVC has achieved significant coding efficiency improvement beyond existing video coding standard by employing many new coding tools. Deblocking Filter, Sample Adaptive Offset and Adaptive Loop Filter for in-loop filtering are currently introduced for the HEVC standardization. However these filters are implemented in spatial domain despite the fact of temporal correlation within video sequences. To reduce the artifacts and better align object boundaries in video , a new algorithm in in-loop filtering is proposed. The proposed algorithm is implemented in HM-11.0 software. This proposed algorithm allows an average bitrate reduction of about 0.7% and improves the PSNR of the decoded frame by 0.05%, 0.30% and 0.35% in luminance and chroma.
177

Development of a novel sensor for soot deposition measurement in a diesel particulate filter using electrical capacitance tomography

Huq, Ragibul January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This paper presents a novel approach of particulate material (soot) measurement in a Diesel particulate filter using Electrical Capacitance Tomography. Modern Diesel Engines are equipped with Diesel Particulate Filters (DPF), as well as on-board technologies to evaluate the status of DPF because complete knowledge of DPF soot loading is very critical for robust efficient operation of the engine exhaust after treatment system. Emission regulations imposed upon all internal combustion engines including Diesel engines on gaseous as well as particulates (soot) emissions by Environment Regulatory Agencies. In course of time, soot will be deposited inside the DPFs which tend to clog the filter and hence generate a back pressure in the exhaust system, negatively impacting the fuel efficiency. To remove the soot build-up, regeneration of the DPF must be done as an engine exhaust after treatment process at pre-determined time intervals. Passive regeneration use exhaust heat and catalyst to burn the deposited soot but active regeneration use external energy in such as injection of diesel into an upstream DOC to burn the soot. Since the regeneration process consume fuel, a robust and efficient operation based on accurate knowledge of the particulate matter deposit (or soot load)becomes essential in order to keep the fuel consumption at a minimum. In this paper, we propose a sensing method for a DPF that can accurately measure in-situ soot load using Electrical Capacitance Tomography (ECT). Simulation results show that the proposed method offers an effective way to accurately estimate the soot load in DPF. The proposed method is expected to have a profound impact in improving overall PM filtering efficiency (and thereby fuel efficiency), and durability of a Diesel Particulate Filter (DPF) through appropriate closed loop regeneration operation.
178

Evaluation of performance of an air handling unit using wireless monitoring system and modeling

Khatib, Akram Ghassan January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Heating, ventilation, and air conditioning (HVAC) is the technology responsible to maintain temperature levels and air quality in buildings to certain standards. In a commercial setting, HVAC systems accounted for more than 50% of the total energy cost of the building in 2013 [13]. New control methods are always being worked on to improve the effectiveness and efficiency of the system. These control systems include model predictive control (MPC), evolutionary algorithm (EA), evolutionary programming (EP), and proportional-integral-derivative (PID) controllers. Such control tools are used on new HVAC system to ensure the ultimate efficiency and ensure the comfort of occupants. However, there is a need for a system that can monitor the energy performance of the HVAC system and ensure that it is operating in its optimal operation and controlled as expected. In this thesis, an air handling unit (AHU) of an HVAC system was modeled to analyze its performance using real data collected from an operating AHU using a wireless monitoring system. The purpose was to monitor the AHU's performance, analyze its key parameters to identify flaws, and evaluate the energy waste. This system will provide the maintenance personnel to key information to them to act for increasing energy efficiency. The mechanical model was experimentally validated first. Them a baseline operating condition was established. Finally, the system under extreme weather conditions was evaluated. The AHU's subsystem performance, the energy consumption and the potential wastes were monitored and quantified. The developed system was able to constantly monitor the system and report to the maintenance personnel the information they need. I can be used to identify energy savings opportunities due to controls malfunction. Implementation of this system will provide the system's key performance indicators, offer feedback for adjustment of control strategies, and identify the potential savings. To further verify the capabilities of the model, a case study was performed on an air handling unit on campus for a three month monitoring period. According to the mechanical model, a total of 63,455 kWh can be potentially saved on the unit by adjusting controls. In addition the mechanical model was able to identify other energy savings opportunities due to set point changes that may result in a total of 77,141 kWh.
179

Hybridization of particle Swarm Optimization with Bat Algorithm for optimal reactive power dispatch

Agbugba, Emmanuel Emenike 06 1900 (has links)
This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of this project is minimization of the active power transmission losses by optimally setting the control variables within their limits and at the same time making sure that the equality and inequality constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA) algorithms which are nature-inspired algorithms have become potential options to solving very difficult optimization problems like ORPD. Although PSO requires high computational time, it converges quickly; while BA requires less computational time and has the ability of switching automatically from exploration to exploitation when the optimality is imminent. This research integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less computation time ability of BA algorithm to get a better optimal solution by incorporating the BA’s frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA algorithms were implemented using MATLAB programming language and tested on three (3) benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to be superior to those of the PSO and BA methods. In order to check if there will be a further improvement on the performance of the HPSOBA, the HPSOBA was further modified by embedding three new modifications to form a modified Hybrid approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified version (MHPSOBA). / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
180

Shift gray codes

Williams, Aaron Michael 11 December 2009 (has links)
Combinatorial objects can be represented by strings, such as 21534 for the permutation (1 2) (3 5 4), or 110100 for the binary tree corresponding to the balanced parentheses (()()). Given a string s = s1 s2 sn, the right-shift operation shift(s, i, j) replaces the substring si si+1..sj by si+1..sj si. In other words, si is right-shifted into position j by applying the permutation (j j−1 .. i) to the indices of s. Right-shifts include prefix-shifts (i = 1) and adjacent-transpositions (j = i+1). A fixed-content language is a set of strings that contain the same multiset of symbols. Given a fixed-content language, a shift Gray code is a list of its strings where consecutive strings differ by a shift. This thesis asks if shift Gray codes exist for a variety of combinatorial objects. This abstract question leads to a number of practical answers. The first prefix-shift Gray code for multiset permutations is discovered, and it provides the first algorithm for generating multiset permutations in O(1)-time while using O(1) additional variables. Applications of these results include more efficient exhaustive solutions to stacker-crane problems, which are natural NP-complete traveling salesman variants. This thesis also produces the fastest algorithm for generating balanced parentheses in an array, and the first minimal-change order for fixed-content necklaces and Lyndon words. These results are consequences of the following theorem: Every bubble language has a right-shift Gray code. Bubble languages are fixed-content languages that are closed under certain adjacent-transpositions. These languages generalize classic combinatorial objects: k-ary trees, ordered trees with fixed branching sequences, unit interval graphs, restricted Schr oder and Motzkin paths, linear-extensions of B-posets, and their unions, intersections, and quotients. Each Gray code is circular and is obtained from a new variation of lexicographic order known as cool-lex order. Gray codes using only shift(s, 1, n) and shift(s, 1, n−1) are also found for multiset permutations. A universal cycle that omits the last (redundant) symbol from each permutation is obtained by recording the first symbol of each permutation in this Gray code. As a special case, these shorthand universal cycles provide a new fixed-density analogue to de Bruijn cycles, and the first universal cycle for the "middle levels" (binary strings of length 2k + 1 with sum k or k + 1).

Page generated in 0.0885 seconds