• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 1
  • Tagged with
  • 25
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpolation dans les algèbres de Hörmander

Ounaïes, Myriam 20 November 2008 (has links) (PDF)
Nous traitons des problèmes d'interpolation dans les espaces ${\mathcal A}_p(\C)$ des fonctions entières telles que $\sup_{z\in \C}\vert f(z)\vert e^{-Bp(z)}<\infty$, où $p$ est une fonction poids et $B$ est une constante positive qui peut varier. Ces espaces sont des algèbres, qu'on appelle algèbres de Hörmander. Le problème peut être formulé de la manière suivante : étant donnée une suite discrète de nombres complexes $\{\alpha_j\}$ et une suite de valeurs complexes $\{w_j\}$ vérifiant $\sup_j\vert w_j\vert e^{-B'p(\alpha_j)}<\infty$ avec une certaine constante $B'>0$, à quelles conditions existe-t-il une fonction $f\in {\mathcal A}_p(\C)$ telle que, pour tout $j$,$f(\alpha_j)=w_j $?Ce problème a été motivé par ses applications à l'analyse harmonique et particulièrement aux équations de convolution. Nous explorons cet aspect en appliquant certains de nos résultats sur l'interpolation aux fonctions moyenne-périodiques. Nous nous intéressons également à la question de l'interpolation en plusieurs variables complexes.
2

Formules de quadrature pour les fonctions entières de type exponentiel

Bahri, Nadia 08 1900 (has links)
Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet. Voici comment nous avons organisé le contenu de ce mémoire. 1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve. 1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article. 2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss. 2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán. 3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de Gauss pour les polynômes. 3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de Turán. 4-a. Annexe A - Notions de base sur les polynômes de Legendre. 4-b. Annexe B - Interpolation polynomiale. 4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel. 4-d. Annexe D - L'article de P. Turán. / This mémoire contains some results about numerical integration. They are related to the famous quadrature formula of K. F. Gauss. A very interesting generalization of the formula of Gauss was obtained by P.Turán. It is contained in a paper that was published in 1948, only a few years after the second world war. Due to adverse circunstances he was in at the time, the author (Turán) left many details for the reader to fill in. Otherwise, the article of Turán inspired a multitude of research, and his formula has been extended in many ways and several papers have been written on this subject. However, there is no single book or paper where one can nd a clear and comprehensive account of the basic results pertaining to Turán's formula. Thus, I would like my Master's mémoire to contain enough details that can enlighten the reader and present an exposition of much that has been done on this subject. Here is how we have arranged the contents of the mémoire. 1-a. The original formula of Gauss for polynomials - statement along with a proof. 1-b. Turán's point of view - detailed account of the results contained in his paper. 2-a. A formula for trigonometric polynomials analogous to that of Gauss. 2-b. A formula for trigonometric polynomials analogous to that of Turán. 3-a. Two formulae for entire functions of exponential type, analogous to the one of Gauss for polynomials. 3-b. A formula for entire functions of exponential type, analogous to that of Turán. 4-a. Annexe A - Basic facts about Legendre polynomials. 4-b. Annexe B - Polynomial interpolation. 4-c. Annexe C - Basic facts about entire functions of exponential type. 4-d. Annexe D - Paper of P. Turán.
3

Une nouvelle classe de modèles auto-régressifs à valeurs entières

Kachour, Maher 09 December 2009 (has links) (PDF)
Dans certaines situations il devient nécessaire de traiter les séries chronologiques à valeurs entières. Au premier regard, l'analyse de telle série peut présenter quelques difficultés, notamment si l'analyse est basée sur quelques modèles stochastiques. Ces modèles doivent refléter la particularité entière de la série observée. De nombreuses tentatives ont été faites pour définir des modèles qui peuvent être utilisés pour décrire les séries chronologiques à valeurs entières. La plupart des modèles proposés sont basés sur l'opérateur d'amincissement et possèdent les mêmes propriétés que les modèles à valeurs réelles bien-connus dans la littérature. L'objectif de cette thèse est d'étudier les modèles auto-régressifs à valeurs entières. Nous introduisons une nouvelle classe de modèles basés sur l'opérateur d'arrondi. Par rapport aux modèles existants, la nouvelle classe a plusieurs avantages: structure d'innovation simple, coefficients de régression avec des signes arbitraires, valeurs négatives possibles pour la série chronologiques et pour la fonction d'auto-corrélation. Nous étudions la stationnarité des modèles et la consistance forte de l'estimateur des moindres carrés proposé pour estimer les paramètres. Nous analysons quelques séries chronologiques à valeurs entières bien-connues avec les modèles introduits.
4

Vibrations de classe Cs/2 des tores plats Ts et théorie des nombres

Allouche, Jean-Paul 08 May 1978 (has links) (PDF)
Nous montrons que, sur le tore Ts muni d'une métrique à coefficients strictement positifs et pour certaines valeurs de ces coefficients, il existe une solution de l'équation des ondes qui soit de classe Cs/2 et non presque-périodique en temps.
5

Formules de quadrature pour les fonctions entières de type exponentiel

Bahri, Nadia 08 1900 (has links)
Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet. Voici comment nous avons organisé le contenu de ce mémoire. 1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve. 1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article. 2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss. 2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán. 3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de Gauss pour les polynômes. 3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de Turán. 4-a. Annexe A - Notions de base sur les polynômes de Legendre. 4-b. Annexe B - Interpolation polynomiale. 4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel. 4-d. Annexe D - L'article de P. Turán. / This mémoire contains some results about numerical integration. They are related to the famous quadrature formula of K. F. Gauss. A very interesting generalization of the formula of Gauss was obtained by P.Turán. It is contained in a paper that was published in 1948, only a few years after the second world war. Due to adverse circunstances he was in at the time, the author (Turán) left many details for the reader to fill in. Otherwise, the article of Turán inspired a multitude of research, and his formula has been extended in many ways and several papers have been written on this subject. However, there is no single book or paper where one can nd a clear and comprehensive account of the basic results pertaining to Turán's formula. Thus, I would like my Master's mémoire to contain enough details that can enlighten the reader and present an exposition of much that has been done on this subject. Here is how we have arranged the contents of the mémoire. 1-a. The original formula of Gauss for polynomials - statement along with a proof. 1-b. Turán's point of view - detailed account of the results contained in his paper. 2-a. A formula for trigonometric polynomials analogous to that of Gauss. 2-b. A formula for trigonometric polynomials analogous to that of Turán. 3-a. Two formulae for entire functions of exponential type, analogous to the one of Gauss for polynomials. 3-b. A formula for entire functions of exponential type, analogous to that of Turán. 4-a. Annexe A - Basic facts about Legendre polynomials. 4-b. Annexe B - Polynomial interpolation. 4-c. Annexe C - Basic facts about entire functions of exponential type. 4-d. Annexe D - Paper of P. Turán.
6

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications

Pham, Viet Nga 18 April 2013 (has links) (PDF)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.
7

SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNES

Hossein, Mouhamad 12 May 2009 (has links) (PDF)
On étudie dans cette thèse l'existence et l'unicité de solutions entières, dans des espaces de Hölder à poids appropriés, d'équations hessiennes elliptiques dans Rn et Cn, invariantes par rotation.
8

Groupes, corps et extensions de Polya : une question de capitulation

Leriche, Amandine 01 December 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'ensemble $Int\left(\mathcal O _K \right)$ des polynômes à valeurs entières sur l'anneau $\mathcal{O}_K$ des entiers d'un corps de nombres $K$. Selon Pólya, une base $\left(f_{n}\right)_{n\in \mathbb{N}}$ du $\mathcal O _K$-module $Int\left(\mathcal O _K \right)$ est dite régulière si pour tout $n \in \mathbb{N}$, $\deg(f_{n})=n$. Un corps $K$ tel que $ Int \left(\mathcal{O}_K \right)$ possède une base régulière est dit de Pólya et le groupe de Pólya d'un corps de nombres $K$ est un sous-groupe du groupe de classes de $K$ qui peut être considéré comme une mesure de l'écart pour un corps au fait d'être de Pólya. Nous étudions le groupe de Pólya d'un compositum $L= K_1 K_2$ de corps de nombres galoisiens et établissons des liens avec la ramification des nombres premiers dans chacune des extensions $K_1 /\mathbb{Q}$ et $K_2 /\mathbb{Q}$. Nous appliquons ces résultats aux corps de nombres de petit degré afin d'élargir la famille des corps de Pólya quadratiques déjà caractérisés. Par ailleurs, une condition pour qu'un corps de nombres $K$ soit de Pólya est que tous les produits d'idéaux de $K$ de même norme soient principaux. Par analogie avec le problème classique du plongement, on peut se poser la question suivante : tout corps de nombres $K$ peut-il être plongé dans un corps de Pólya? Nous donnons une réponse positive à cette question : pour tout corps $K$, le corps de classes de Hilbert $H_K$ de $K$ est un corps de Pólya . Toujours par analogie avec le problème de plongement où l'on sait que les idéaux de $\mathcal{O}_K$ deviennent principaux dans $\mathcal{O}_{H_K}$, on peut définir la notion d'extension de Pólya d'un corps $K$ : il s'agit de corps $L$ contenant $K$ dans lesquels le groupe de Pólya de $K$ devient trivial par extensions des idéaux, ce sont aussi des corps $L$ tels que le $\mathcal O _L$-module engendré par $Int\left(\mathcal O _K \right)$ possède une base régulière. Outre $H_K$ dans le cas général, dans le cas où $K$ est une extension abélienne, la capitulation des idéaux ambiges de $K$ montre que le corps de genre de $K$ en est une extension de Pólya. Ceci nous amène à des questions de minimalité et d'unicité concernant les corps et extensions de Pólya.
9

Autour de l'hyperbolicité en géométrie complexe

Rousseau, Erwan 17 November 2010 (has links) (PDF)
L'étude des courbes entières dans les variétés complexes a déjà une longue histoire que l'on peut faire remonter au petit théorème de Picard. Les variétés complexes hyperboliques sont actuellement très étudiées notamment par les liens fascinants que l'hyperbolicité a avec la géométrie arithmétique. A la suite de Lang et Vojta, on dispose de conjectures sur les liens entre hyperbolicité analytique et arithmétique e.g. la densité des courbes entières et celle des points rationnels.On décrit dans ce texte de synthèse différentes approches possibles du problème de l'hyperbolicité: équations différentielles algébriques, structures orbifoldes et courants d'Ahlfors.
10

Usinage des aciers prétraités à l'huile entière - effets physico-chimiques des additifs soufrés

Bierla, Aleksandra 24 September 2009 (has links) (PDF)
De nombreuses opérations d'usinage nécessitent la présence d'un fluide de coupe afin d'en assurer le succès du fait de la sévérité des sollicitations que subit l'outil. Le but de l'étude est d'identifier les performances de divers additifs soufrés dans les huiles entières, de sélectionner parmi eux l'additif soufré le plus efficace pour la coupe des métaux, ainsi que de comprendre leurs mécanismes d'action dans les différentes applications d'usinage. L'objectif de l'étude est donc d'analyser les mécanismes tribochimiques de lubrification mis en jeu dans les procédés d'usinage et d'optimiser la formulation du lubrifiant. L'influence des différents paramètres liés à la coupe est également étudiée afin d'apporter plus de connaissances sur l'action générale des lubrifiants dans le cas de l'usinage moderne.

Page generated in 0.0496 seconds