Spelling suggestions: "subject:"trapped""
1 |
Effect of Pressurization and Expulsion of Entrapped Air in PipelinesLee, Nahm Ho 20 July 2005 (has links)
Analytical and experimental laboratory studies were conducted for rapid pressurizing of entrapped gas at the end of a horizontal liquid pipeline. In this paper analytical and experimental model study are presented for pressurizing entrapped gas pocket at the end of a liquid column in a horizontal pipeline. Analytical models are considered such as (1) acoustic effect of both liquid and gas side, (2) variation of liquid length, and (3) thermal damping process. Closed form of solutions were derived for a lumped liquid and lumped gas model if pipeline is a horizontal. Experiments were conducted to verify the analytical models. Comparison of analytical and experimental model results were presented.
Analytical model was developed to define the physics behind the gas venting case. Experiments were conducted for a range of orifice sizes from 1/16 to of the pipe diameter with reservoir pressure two, three and four times of ambient pressure for five different pipe configurations. Experimental results confirm the assumption of modified entrapped air model is correct.
|
2 |
Effects of atmospheric pressure and temperature on entrapped gas and ebullition in peatHarrison, Kristen 01 1900 (has links)
<p> Entrapped gas (V g) greatly affects peatland biogeochemistry and hydrology by altering volumetric water content, buoyancy, hydraulic conductivity and generating overpressure zones. These over pressure zones affect hydraulic gradients which influence water and nutrient flow direction and rate. The loss of this entrapped gas to the atmosphere via ebullition (bubbling) has been proposed as the dominant transport mechanisms for CH4 from peatlands, releasing significant amounts of CH4 to the atmosphere in a single event. Atmospheric pressure has been linked to ebullition events and is known to affect gas volumes; similarly, temperature affects gas production and volume. This thesis investigates the relationship between these environmental factors (atmospheric pressure and temperature) on both V g and ebullition processes. </p> <p> An incubation experiment using six peat cores at three incubation temperatures ( 4 °C, 11 °C, 20°C) was conducted in 2004 where each core was incubated in a sealed PVC cylinder and instrumented to measure Vg, pore-water C~ concentrations, and ebullition (volume and C~concentrations). Temperature data for each incubation group and atmospheric pressure were measured within the laboratory setting. </p> <p> Increasing bulk density was associated with decreased frequency of ebullition events and higher average ebullition volumes, indicating a relationship between bulk density ebullition characteristics. Future work will be needed to identify the direct relationship between V g, bulk density and ebullition. </p> <p> Evaluation of ebullition and atmospheric pressure data revealed a strong relationship between periods of falling pressure and ebullition events where 71% of measured events (n = 391) occurred during periods of decreasing pressure. Investigation of falling pressure characteristics revealed that drop duration (days) had a more significant effect on total ebullition volumes than did magnitude (kPa). As such, long periods of decreasing pressure trigger greater gas releases via ebullition than short decreases of large magnitude. This has implications for the prediction and modelling of ebullition events in natural systems, and for the estimation of CH4 fluxes and carbon budgets of peatlands. </p> The V g variability model accounted for changes in V g caused by gas transfer between aqueous and gaseous phases (Henry's law) and thermal and pressure induced volume changes (Ideal gas law) using measured temperature and atmospheric pressure data. Gas loss via ebullition and CH4 production were also accounted for. Good agreement was found between measured and modeled V g values where gas contents were greater than 10% (average r2 value of 0.78). Accuracy of the model indicates a general understanding of the processes, however it also suggests that further factors are influencing internal gas dynamics that require further investigation. </p? / Thesis / Master of Science (MSc)
|
3 |
The Effects of Doping on the Behavior of Sol-Gel Entrapped ProteinsGulcev, Makedonka Donna 08 1900 (has links)
<p> Research in the field of sol-gel derived materials has evolved dramatically over the past forty years. The developments in the past decade, in the field of bioanalytical chemistry, have revolutionized this field. Early research, as well as that done by our group, has confirmed that the commonly used alkoxysilane precursors (tetraethylorthosilicate - TEOS or tetramethylorthosilicate - TMOS) are not ideal for entrapment of biomolecules. They produce materials that are brittle, often undergo cracking due to hydration stresses and in some cases, can block the accessibility of the analyte to the entrapped biomolecules. My research project therefore focuses on the development of new sol-gel processing methods through the use of an additive-glycerol, which will produce new "second generation" glasses. I have focused on obtaining a basic understanding of glycerol-doped sol-gel derived materials and the effect they have on the entrapped biomolecules. Glycerol-doped sol-gel materials display larger pore size, decreased shrinkage and cracking as compared to the TEOS-based materials. Biocatalysts entrapped in glycerol-doped materials showed significantly smaller decreases in activity over a period of one month relative to enzyme entrapped in TEOS. Also, to gain further insight into the effects of glycerol doping on the properties of entrapped proteins, both steady-state and time-resolved fluorescence of Trp 214 was used to examine the conformation, dynamics, accessibility, thermal/chemical stability and the degree of ligand binding of human serum albumin (HSA) in solution and after entrapment of the protein in glycerol-doped TEOS-based materials.</p> / Thesis / Master of Science (MSc)
|
4 |
Microfibrous entrapped catalysts and sorbents microstructured heterogeneous contacting systems with enhanced efficiency /Kalluri, Ranjeeth Reddy. Tatarchuk, Bruce J., January 2008 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references (p. 162-171).
|
5 |
Mobilization of Entrapped Gases in Quasi-Saturated Groundwater Systems Contaminated with Biofuel AdditivesElliott, Claire January 2020 (has links)
Biofuel additives have been designed to reduce vehicular emissions to the atmosphere to limit the effects of greenhouse gases on global climate change. The chemical properties of common biofuel additives exhibit ideal characteristics for use in gasoline and diesel, while limiting emissions from exhaust. As biofuel additives begin to be administered regularly to gasoline and fuel sources, the compounds will appear in spill sites, posing a risk to groundwater sources. The interactions that occur between common biofuel additives and trapped gases below the water table were analyzed in this work to further understand the potential consequences on quasi-saturated groundwater zones. The behaviour of trapped gases contaminated with different biofuel additives were analyzed in laboratory experiments conducted in a two-dimensional flow cell to demonstrate the mechanisms of gas flow through a capillary barrier resulting from modified interfacial properties in the presence of a chemical surfactant. Contamination of gas-fluid interfaces by applied biofuel additives at the pore scale resulted in the breakthrough of gas through the capillary barrier. Gas migration terminated at a critical pool height proportional to the reduction in interfacial tension induced by the administered biofuel additives. To further demonstrate the relationship between interfacial tension and critical gas pool height, an interfacial tension-macroscopic invasion percolation model was developed to simulate the transport mechanisms and behaviours of gas flow when an immobile pool is contaminated with 1-Butanol. The findings in this study provide a fundamental understanding of the mechanisms and behaviours of gas mobilization in the presence of common biofuel additives. / Thesis / Master of Science (MSc) / The use of biofuel additives in gasoline and diesel fuels has become an attractive alternative to fully petroleum-based fuels to reduce the release of vehicular greenhouse gases to the atmosphere. As fuel spills and storage tank leaks continue to be a primary source of groundwater contamination, the appearance of biofuel additives in contaminated systems will appear below the subsurface as they continue to be administered to modern gasoline and diesel fuels. This work investigated the consequences of biofuel contamination of groundwater systems containing gas trapped within pore spaces through the use of laboratory experiments and numerical modelling. Contamination of these systems with different biofuel additives displayed a similar response, in which gas had mobilized from within pore spaces and released to the atmosphere. Mobilization of trapped gas in groundwater can alter the primary hydraulic properties that characterize a particular hydrogeologic system.
|
6 |
Cement-based Materials' Characterization using Ultrasonic AttenuationPunurai, Wonsiri 05 April 2006 (has links)
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the
civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the
application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a
high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material
(ultrasonic absorption), and the scattering losses due to the material heterogeneity.
The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste - a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of
existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the
effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop
a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior.
Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a
fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a
realistic model for ultrasonic wave propagation study for concrete.
|
7 |
Advanced numerical and experimental transient modelling of water and gas pipeline flows incorporating distributed and local effects.Kim, Young Il January 2008 (has links)
One of the best opportunities to reduce pipeline accidents and subsequent product loss comes from implementing better pipeline condition assessment and fault detection systems. Transient analysis model based condition assessment is the most promising technique because pressure transients propagate entire system interacting with the pipe and any devices in the system. Transient measurements embody a large amount of information about the physical characteristics of the system. The performance of this technique has its difficulties because a highly accurate transient model is required. Real systems have numerous uncertainties and flow system components that presents a major challenge in the development of precise transient analysis models. To improve transient modelling for the performance of condition assessment, this research undertakes a comprehensive investigation into the transient behaviour of distributed and various local energy loss system components in water and gas pipelines. The dynamic behaviours that have been investigated in this research are the effect of unsteady wall resistance, viscoelasticity effects of polymer pipe, and local energy loss elements including leakages, entrapped air pockets, orifices, and blockages during unsteady pipe flow conditions. The dynamic characteristics of these system components are modelled based on the conservative solution scheme using the governing equations in their conservative form. Use of the conservative form of the equations improves the sensitivity and applicability of transient analysis in both liquid and gas pipeline systems. The numerical model results are compared to laboratory experiments in water and gas pipelines to observe the interaction between transient pressure wave and system components and to verify the proposed models. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337145 / Thesis( Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering 2008
|
8 |
Low-Voltage Electrowetting on Dielectrics Integrated and Investigated with Electrical Impedance Spectroscopy (LV-EWOD-EIS)Li, Yingjia 07 August 2018 (has links)
No description available.
|
9 |
Biochemical processes for Balsamic-styled vinegar engineeringHutchinson, Ucrecia Faith January 2019 (has links)
Thesis (PhD (Chemical Engineering))--Cape Peninsula University of Technology, 2019 / The South African wine industry is constantly facing several challenges which affect the quality of wine, the local/global demand and consequently the revenue generated. These challenges include the ongoing drought, bush fires, climate change and several liquor amendment bills aimed at reducing alcohol consumption and alcohol outlets in South Africa. It is therefore critical for the wine industry to expand and find alternative ways in which sub-standard or surplus wine grapes can be used to prevent income losses and increase employment opportunities. Traditional Balsamic Vinegar (TBV) is a geographically and legislative protected product produced only in a small region in Italy. However, the methodology can be used to produce similar vinegars in other regions. Balsamic-styled vinegar (BSV), as defined in this thesis, is a vinegar produced by partially following the methods of TBV while applying process augmentation techniques. Balsamic-styled vinegar is proposed to be a suitable product of sub-standard quality or surplus wine grapes in South Africa. However, the production of BSV necessitates the use of cooked (high sugar) grape must which is a less favourable environment to the microorganisms used during fermentation. Factors that negatively affect the survival of the microorganisms include low water activity due to the cooking, high osmotic pressure and high acidity. To counteract these effects, methods to improve the survival of the non-Saccharomyces yeasts and acetic acid bacteria used are essential.
The primary aim of this study was to investigate several BSV process augmentation techniques such as, aeration, agitation, cell immobilization, immobilized cell reusability and oxygen mass transfer kinetics in order to improve the performance of the microbial consortium used during BSV production.
The work for this study was divided into four (4) phases. For all the phases a microbial consortium consisting of non-Saccharomyces yeasts (n=5) and acetic acid bacteria (n=5) was used. Inoculation of the yeast and bacteria occurred simultaneously. The 1st phase of the study entailed evaluating the effect of cells immobilized by gel entrapment in Ca-alginate beads alongside with free-floating cells (FFC) during the production of BSV. Two Ca-alginate bead sizes were tested i.e. small (4.5 mm) and large (8.5 mm) beads to evaluate the effects of surface area or bead size on the overall acetification rates. Ca-alginate beads and FFC fermentations were also evaluated under static and agitated (135 rpm) conditions. The 2nd phase of the study involved studying the cell adsorption technique for cell immobilization which was carried-out using corncobs (CC) and oak wood chips (OWC), while comparing to FFC fermentations. At this phase of the study, other vinegar bioreactor parameters such as agitation and aeration were studied in contrast to static fermentations. One agitation setting (135 rpm) and two aeration settings were tested i.e. high (0.3 vvm min−1) and low (0.15 vvm min−1) aeration conditions. Furthermore, to assess the variations in cell adsorption capabilities among individual yeast and AAB cells, the quantification of cells adsorbed on CC and OWC prior- and post-fermentation was conducted using the dry cell weight method.
The 3rd phase of the study entailed evaluating the reusability abilities of all the matrices (small Ca-alginate beads, CC and OWC) for successive fermentations. The immobilized cells were evaluated for reusability on two cycles of fermentation under static conditions. Furthermore, the matrices used for cell immobilization were further analysed for structure integrity by scanning electron microscopy (SEM) before and after the 1st cycle of fermentations. The 3rd phase of the study also involved the sensorial (aroma and taste) evaluations of the BSV’s obtained from the 1st cycle of fermentation in order to understand the sensorial effects of the Ca-alginate beads, CC and OWC on the final BSV. The 4th phase of the study investigated oxygen mass transfer kinetics during non-aerated and aerated BSV fermentation. The dynamic method was used to generate several dissolved oxygen profiles at different stages of the fermentation. Consequently, the data obtained from the dynamic method was used to compute several oxygen mass transfer parameters, these include oxygen uptake rate ( 𝑟𝑟𝑂𝑂2 ), the stoichiometric coefficient of oxygen consumption vs acid yield (𝑌𝑌𝑂𝑂/𝐴𝐴), the oxygen transfer rate (𝑁𝑁𝑂𝑂2 ), and the volumetric mass transfer coefficients (𝐾𝐾𝐿𝐿𝑎𝑎). During all the phases of the study samples were extracted on weekly intervals to evaluate pH, sugar, salinity, alcohol and total acidity using several analytical instruments. The 4th phase of the study involved additional analytical tools, i.e. an oxygen µsensor to evaluate dissolved oxygen and the ‘Speedy breedy’ to measure the respiratory activity of the microbial consortium used during fermentation.
The data obtained from the 1st phase of the study demonstrated that smaller Ca-alginate beads resulted in higher (4.0 g L-1 day−1) acetification rates compared to larger (3.0 g L-1 day−1) beads, while freely suspended cells resulted in the lowest (0.6 g L-1 day−1) acetification rates. The results showed that the surface area of the beads had a substantial impact on the acetification rates when gel entrapped cells were used for BSV fermentation. The 2nd phase results showed high acetification rates (2.7 g L-1 day−1) for cells immobilized on CC in contrast to cells immobilized on OWC and FFC, which resulted in similar and lower acetification rates. Agitated fermentations were unsuccessful for all the treatments (CC, OWC and FFC) studied. Agitation was therefore assumed to have promoted cell shear stress causing insufficient acetification during fermentations. Low aerated fermentations resulted in better acetification rates between 1.45–1.56 g L-1 day−1 for CC, OWC and FFC. At a higher aeration setting, only free-floating cells were able to complete fermentations with an acetification rate of 1.2 g L-1 day−1. Furthermore, the adsorption competence data showed successful adsorption on CC and OWC for both yeasts and AAB with variations in adsorption efficiencies, whereby OWC displayed a lower cell adsorption capability compared to CC. On the other hand, OWC were less efficient adsorbents due to their smooth surface, while the rough surface and porosity of CC led to improved adsorption and, therefore, enhanced acetification rates. The 3rd phase results showed a substantial decline in acetification rates on the 2nd cycle of fermentations when cells immobilized on CC and OWC were reused. While cells entrapped in Ca-alginate beads were able to complete the 2nd cycle of fermentations at reduced acetification rates compared to the 1st cycle of fermentations. The sensory results showed positive ratings for BSV’s produced using cells immobilized in Ca-alginate beads and CC. However, BSV’s produced using OWC treatments were neither ‘liked nor disliked’ by the judges. The SEM imaging results further showed a substantial loss of structural integrity for Ca-alginate beads after the 1st cycle fermentations, with minor changes in structural integrity of CC being observed after the 1st cycle fermentations. OWC displayed the same morphological structure before and after the 1st cycle fermentations which was attributed to their robustness. Although Ca-alginate beads showed a loss in structural integrity, it was still assumed that Ca-alginate beads provided better protection against the harsh environmental conditions in contrast to CC and OWC adsorbents due to the acetification rates obtained on both cycles. The 4th phase data obtained from the computations showed that non-aerated fermentations had a higher 𝑌𝑌𝑂𝑂/𝐴𝐴, 𝑟𝑟𝑂𝑂2 , 𝑁𝑁𝑂𝑂2 and a higher 𝐾𝐾𝐿𝐿𝑎𝑎 . It was clear that aerated fermentations had a lower aeration capacity due to an inappropriate aeration system design and an inappropriate fermentor. Consequently, aeration led to several detrimental biochemical changes in the fermentation medium thus affecting 𝐾𝐾𝐿𝐿𝑎𝑎 and several oxygen mass transfer parameters which serve as a driving force.
Overall, it was concluded that the best method for BSV production is the use of cells entrapped in small alginate beads or cells adsorbed on CC under static and non-aerated fermentations. This conclusion was based on several factors such as cell affinity/cell protection, acetification rates, fermentation period and sensorial contributions. However, cells entrapped in Ca-alginate beads had the highest acetification rates. The oxygen mass transfer computations demonstrated a high 𝐾𝐾𝐿𝐿𝑎𝑎 when Ca-alginate beads were used under static-non-aerated conditions compared to fermentations treated with CC. Therefore, a fermentor with a high aeration capacity needs to be designed to best suit the two BSV production systems (Ca-alginate beads and CC). It is also crucial to develop methods which can increase the robustness of Ca-alginate beads in order to improve cell retention and reduce the loss of structural integrity for subsequent cycles of fermentation. Studies to define parameters used for upscaling the BSV production process for large scale productions are also crucial.
|
10 |
Modélisation et simulation d'écoulements transitoires diphasiques eau-air dans les circuits hydrauliques / Modelling and simulation of transient air-water two-phase flows in hydraulic pipesDemay, Charles 15 November 2017 (has links)
Ce travail est consacré à la modélisation mathématique et numérique des écoulements eau-air en conduite qui interviennent notamment dans les centrales de production d’électricité ou les réseaux d’eaux usées. On s’intéresse particulièrement aux écoulements mixtes caractérisés par la présence de régimes stratifiés pilotés par des ondes gravitaires lentes, de régimes en charge ou secs (conduite remplie d’eau ou d’air) pilotés par des ondes acoustiques rapides, et de poches d’air piégées. Une modélisation précise de ces écoulements est nécessaire afin de garantir le bon fonctionnement du circuit hydraulique sous-jacent. Alors que la plupart des modèles disponibles dans la littérature se concentrent sur la phase eau en négligeant la présence de l’air, un modèle bicouche compressible prenant en compte les interactions eau-air est proposé dans cette thèse. Sa construction réside dans l’intégration des équations d’Euler barotropes sur la hauteur de chaque phase et dans l’application de la contrainte hydrostatique sur le gradient de pression de l’eau. Le modèle obtenu est hyperbolique et satisfait une inégalité d’entropie en plus d’autres propriétés mathématiques notables, telles que l’unicité des relations de saut ou la positivité des hauteurs et densités de chaque phase. Au niveau discret, la simulation d’écoulements mixtes avec le modèle bicouche compressible soulève plusieurs défis en raison de la disparité des vitesses d’ondes caractérisant chaque régime, des processus de relaxation rapide sous-jacents, et de la disparition de l’une des phases dans les régimes en charge ou sec. Une méthode à pas fractionnaires implicite-explicite est alors développée en s’appuyant sur la relaxation rapide en pression et sur le mimétisme avec les équations de Saint-Venant pour la dynamique lente de la phase eau. En particulier, une approche par relaxation permet d’obtenir une stabilisation du schéma en fonction du régime d’écoulement. Plusieurs cas tests sont traités et démontrent la capacité du modèle proposé à gérer des écoulements mixtes incluant la présence de poches d’air piégées. / The present work is dedicated to the mathematical and numerical modelling of transient air-water flows in pipes which occur in piping systems of several industrial areas such as nuclear or hydroelectric power plants or sewage pipelines. It deals more specifically with the so-called mixed flows which involve stratified regimes driven by slow gravity waves, pressurized or dry regimes (pipe full of water or air) driven by fast acoustic waves and entrapped air pockets. An accurate modelling of these flows is necessary to guarantee the operability of the related hydraulic system. While most of available models in the literature focus on the water phase neglecting the air phase, a compressible two-layer model which accounts for air-water interactions is proposed herein. The derivation process relies on a depth averaging of the isentropic Euler set of equations for both phases where the hydrostatic constraint is applied on the water pressure gradient. The resulting system is hyperbolic and satisfies an entropy inequality in addition to other significant mathematical properties, including the uniqueness of jump conditions and the positivity of heights and densities for each layer. Regarding the discrete level, the simulation of mixed flows with the compressible two-layer model raises key challenges due to the discrepancy of wave speeds characterizing each regime combined with the fast underlying relaxation processes and with phase vanishing when the flow becomes pressurized or dry. Thus, an implicit-explicit fractional step method is derived. It relies on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the water phase. In particular, a relaxation method provides stabilization terms activated according to the flow regime. Several test cases are performed and attest the ability of the compressible two-layer model to deal with mixed flows in pipes involving air pocket entrapment.
|
Page generated in 0.0562 seconds