1 |
Estudo dos efeitos dos tratamentos físico-mecânicos na hidrólise da celulose do bagaço de cana-de-açúcar / Study of the effects of physico-mechanical treatments on sugarcane bagasse cellulose hydrolysisSantucci, Beatriz Stangherlin 07 August 2018 (has links)
Com o intuito de elucidar os efeitos das propriedades físicas e morfológicas na efetividade da sacarificação enzimática das fibras de bagaço de cana-de-açúcar, este trabalho propõe o uso de diferentes métodos de processamento físico-químicos e -mecânicos para a modificação da estrutura da parede celular. Os tratamentos físico-mecânicos, através de fenômenos de fibrilação e delaminação, promovem a abertura estrutural das fibras e aumentam a acessibilidade às enzimas hidrolíticas, porém sem modificar a composição química do material. Para uma compreensão abrangente da ação dos métodos físico-mecânicos propostos nas características estruturais, as fibras de bagaço foram previamente tratadas por métodos físico-químicos - hidrotérmico e organossolve - de modo a obter cinco materiais de diferentes composições químicas. O estudo dos tratamentos físico-mecânicos foi realizado empregando-se equipamentos de diferentes configurações, cujos modos de ação e consequente impacto nas fibras diferem entre si, sendo estes dois tipos de refino - refinador de discos Bauer e moinho Jokro, e um tipo de moagem - moinho criogênico. A variável do refino em moinho Jokro foi o tempo de tratamento, enquanto as variáveis do processamento em refinador de discos foi o tempo de refino e a distância entre os discos. Já as condições da moagem criogênica foram definidas de modo a obter amostras homogêneas do ponto de vista macroscópico. As modificações provocadas na estrutura das fibras foram determinadas a partir das análises das áreas superficiais externa (dimensões das fibras) e interna (porosidade da parede celular), além da organização cristalina das fibrilas celulósicas. Primeiramente, estudou-se de modo detalhado os efeitos dos métodos mecânicos nas propriedades estruturais das amostras de bagaço, interpretando-se como os efeitos primários do refino evoluem de acordo com a severidade e o tipo tratamento empregado a partir das caracterizações dos efeitos secundários. Posteriormente, confrontaram-se os resultados obtidos nas análises físicas e morfológicas com o rendimento de açúcares obtido na hidrólise enzimática. Os resultados permitiram constatar que, enquanto o moinho Jokro promoveu um grande aumento no rendimento de glicose obtido por culminar, simultaneamente, no aumento da estrutura capilar pela intensa fibrilação interna, e da área superficial externa tanto pela formação de elementos finos quanto pela redução das dimensões das fibras por corte, o refinador de discos Bauer levou a uma melhoria menos pronunciada na hidrolisabilidade por resultar no aumento da porosidade, porém sem expressivos corte e fibrilação externa das fibras. Diferentemente, a moagem criogênica promoveu apenas a drástica e heterogênea redução das dimensões das fibras, enquanto não permitiu mudanças significativas na hidrolisabilidade das amostras. Por fim, os valores dos parâmetros estruturais determinados foram analisados pelo método estatístico de componentes principais (PCA) visando quantificar por qual fator cada uma destas características influencia na extensão da hidrólise da celulose do bagaço. A PCA permitiu visualizar que os fatores relacionados à superfície interna da parede celular, como a área de poros acessíveis e a dimensão lateral do cristalito de celulose, são os principais aspectos que regem o rendimento de sacarificação da biomassa lignocelulósica. Os resultados deste estudo permitiram assim a proposta de um modelo de predição do comportamento de hidrólise das amostras de bagaço. / In order to elucidate the effects of the physical and morphological properties on the effectiveness of enzymatic saccharification of sugarcane bagasse fibers, this work proposes different methods of physico-chemical and -mechanical processing to modify the cell wall structure. Through fibrillation and delamination phenomena, physico-mechanical treatments promote the structural opening of the fibers and increase the accessibility to hydrolytic enzymes, but without modifications on the chemical composition of the processed material. For a thorough comprehension about the action of the proposed physico-mechanical methods on the structural characteristics, the bagasse fibers were previously treated by physico-chemical methods - hydrothermal and organosolv - to obtain five materials with different chemical composition. The study of the physico-mechanical treatments was performed by equipment with different configuration, which operating modes and consequent impact on the fibers differ from each other. The equipment were two types of refiner - Bauer discs refiner and Jokro mill - and one type of mill - cryogenic mill. The refining variable considered for the Jokro mill was the refining time, while the processing variables for the disc refiner were the refining time and the discs gap. Concerning the cryogenic mill, the operation conditions were defined to achieve macroscopic homogeneous samples. Modifications on the fibers structure were assessed by analysis of the external and internal surfaces (fibers dimension and the cell wall porosity, respectively), as well as the crystalline organization of the cellulosic fibrils. Firstly, it was performed a thorough study concerning the effects of the mechanical methods in the structural properties of the bagasse samples. In this study, it was interpreted how the primary effects of refining evolve according to severity and type of treatment from the characterization of the secondary effects. Then, the results acquired in the physical and morphological analysis were confronted with the glucose yield obtained in the enzymatic hydrolysis. The results showed that the Jokro mill promoted a great increase in the glucose yield by culminating, simultaneously, in the increase of the capillary structure by the intense internal fibrillation, and of the external surface area both by the formation of fines as by the reduction of the dimensions of fibers by cutting. In turns, the Bauer discs refiner leaded to a lower improvement of the bagasse pulps hydrolysability, which was a consequence of the increased porosity, but without expressive cut and external fibrillation of the fibers. In a different way, the cryogenic milling promoted just a drastic and heterogeneous reduction of the fibers dimensions, without any significant change in the hydrolysability of the samples. Finally, the determined values of the structural parameters were analyzed by the statistical method of the principal component analysis (PCA), aiming to quantify by which factor each one of these characteristics influences in the extent of hydrolysis of bagasse cellulose. The PCA showed that the factors related to the internal surface of the cell wall, such as the accessible pore area and the lateral dimension of the cellulose crystallite, are the main aspects that govern the saccharification yield of the lignocellulosic biomass. The results of this study allowed the proposal of an empiric prediction model of the hydrolysis behavior of the bagasse samples.
|
2 |
Estudo dos efeitos dos tratamentos físico-mecânicos na hidrólise da celulose do bagaço de cana-de-açúcar / Study of the effects of physico-mechanical treatments on sugarcane bagasse cellulose hydrolysisBeatriz Stangherlin Santucci 07 August 2018 (has links)
Com o intuito de elucidar os efeitos das propriedades físicas e morfológicas na efetividade da sacarificação enzimática das fibras de bagaço de cana-de-açúcar, este trabalho propõe o uso de diferentes métodos de processamento físico-químicos e -mecânicos para a modificação da estrutura da parede celular. Os tratamentos físico-mecânicos, através de fenômenos de fibrilação e delaminação, promovem a abertura estrutural das fibras e aumentam a acessibilidade às enzimas hidrolíticas, porém sem modificar a composição química do material. Para uma compreensão abrangente da ação dos métodos físico-mecânicos propostos nas características estruturais, as fibras de bagaço foram previamente tratadas por métodos físico-químicos - hidrotérmico e organossolve - de modo a obter cinco materiais de diferentes composições químicas. O estudo dos tratamentos físico-mecânicos foi realizado empregando-se equipamentos de diferentes configurações, cujos modos de ação e consequente impacto nas fibras diferem entre si, sendo estes dois tipos de refino - refinador de discos Bauer e moinho Jokro, e um tipo de moagem - moinho criogênico. A variável do refino em moinho Jokro foi o tempo de tratamento, enquanto as variáveis do processamento em refinador de discos foi o tempo de refino e a distância entre os discos. Já as condições da moagem criogênica foram definidas de modo a obter amostras homogêneas do ponto de vista macroscópico. As modificações provocadas na estrutura das fibras foram determinadas a partir das análises das áreas superficiais externa (dimensões das fibras) e interna (porosidade da parede celular), além da organização cristalina das fibrilas celulósicas. Primeiramente, estudou-se de modo detalhado os efeitos dos métodos mecânicos nas propriedades estruturais das amostras de bagaço, interpretando-se como os efeitos primários do refino evoluem de acordo com a severidade e o tipo tratamento empregado a partir das caracterizações dos efeitos secundários. Posteriormente, confrontaram-se os resultados obtidos nas análises físicas e morfológicas com o rendimento de açúcares obtido na hidrólise enzimática. Os resultados permitiram constatar que, enquanto o moinho Jokro promoveu um grande aumento no rendimento de glicose obtido por culminar, simultaneamente, no aumento da estrutura capilar pela intensa fibrilação interna, e da área superficial externa tanto pela formação de elementos finos quanto pela redução das dimensões das fibras por corte, o refinador de discos Bauer levou a uma melhoria menos pronunciada na hidrolisabilidade por resultar no aumento da porosidade, porém sem expressivos corte e fibrilação externa das fibras. Diferentemente, a moagem criogênica promoveu apenas a drástica e heterogênea redução das dimensões das fibras, enquanto não permitiu mudanças significativas na hidrolisabilidade das amostras. Por fim, os valores dos parâmetros estruturais determinados foram analisados pelo método estatístico de componentes principais (PCA) visando quantificar por qual fator cada uma destas características influencia na extensão da hidrólise da celulose do bagaço. A PCA permitiu visualizar que os fatores relacionados à superfície interna da parede celular, como a área de poros acessíveis e a dimensão lateral do cristalito de celulose, são os principais aspectos que regem o rendimento de sacarificação da biomassa lignocelulósica. Os resultados deste estudo permitiram assim a proposta de um modelo de predição do comportamento de hidrólise das amostras de bagaço. / In order to elucidate the effects of the physical and morphological properties on the effectiveness of enzymatic saccharification of sugarcane bagasse fibers, this work proposes different methods of physico-chemical and -mechanical processing to modify the cell wall structure. Through fibrillation and delamination phenomena, physico-mechanical treatments promote the structural opening of the fibers and increase the accessibility to hydrolytic enzymes, but without modifications on the chemical composition of the processed material. For a thorough comprehension about the action of the proposed physico-mechanical methods on the structural characteristics, the bagasse fibers were previously treated by physico-chemical methods - hydrothermal and organosolv - to obtain five materials with different chemical composition. The study of the physico-mechanical treatments was performed by equipment with different configuration, which operating modes and consequent impact on the fibers differ from each other. The equipment were two types of refiner - Bauer discs refiner and Jokro mill - and one type of mill - cryogenic mill. The refining variable considered for the Jokro mill was the refining time, while the processing variables for the disc refiner were the refining time and the discs gap. Concerning the cryogenic mill, the operation conditions were defined to achieve macroscopic homogeneous samples. Modifications on the fibers structure were assessed by analysis of the external and internal surfaces (fibers dimension and the cell wall porosity, respectively), as well as the crystalline organization of the cellulosic fibrils. Firstly, it was performed a thorough study concerning the effects of the mechanical methods in the structural properties of the bagasse samples. In this study, it was interpreted how the primary effects of refining evolve according to severity and type of treatment from the characterization of the secondary effects. Then, the results acquired in the physical and morphological analysis were confronted with the glucose yield obtained in the enzymatic hydrolysis. The results showed that the Jokro mill promoted a great increase in the glucose yield by culminating, simultaneously, in the increase of the capillary structure by the intense internal fibrillation, and of the external surface area both by the formation of fines as by the reduction of the dimensions of fibers by cutting. In turns, the Bauer discs refiner leaded to a lower improvement of the bagasse pulps hydrolysability, which was a consequence of the increased porosity, but without expressive cut and external fibrillation of the fibers. In a different way, the cryogenic milling promoted just a drastic and heterogeneous reduction of the fibers dimensions, without any significant change in the hydrolysability of the samples. Finally, the determined values of the structural parameters were analyzed by the statistical method of the principal component analysis (PCA), aiming to quantify by which factor each one of these characteristics influences in the extent of hydrolysis of bagasse cellulose. The PCA showed that the factors related to the internal surface of the cell wall, such as the accessible pore area and the lateral dimension of the cellulose crystallite, are the main aspects that govern the saccharification yield of the lignocellulosic biomass. The results of this study allowed the proposal of an empiric prediction model of the hydrolysis behavior of the bagasse samples.
|
3 |
Bioconversão de hidrolisados de casca de arroz e soja em etanol e xilitol por levedurasHickert, Lilian Raquel January 2014 (has links)
Os resíduos lignocelulósicos agroindustriais, como a casca de arroz e a casca de soja, são fontes abundantes e de baixo custo na produção biotecnológica de compostos de alto valor agregado como etanol e xilitol, por figurarem como fontes de celulose e hemicelulose. No presente trabalho será estudada a capacidade de conversão dos açúcares provenientes destes resíduos por diferentes leveduras ampliando os conhecimentos sobre a produção biotecnológica de alcoóis. A capacidade de Candida shehatae, Saccharomyces cerevisiae, e a co-cultura destas duas leveduras na conversão do açúcar presente no hidrolisado de casca de arroz (RHH) utilizado como substrato para a produção de etanol foi estudada. Em experimentos em agitador orbital, as co-culturas dessas leveduras apresentaram rendimentos de etanol (YP/S) de 0,42 e 0,51 em meio sintético simulando a composição do hidrolisado e em RHH, respectivamente. Ao analisar a produção de etanol com culturas puras de C. shehatae o rendimento de etanol foi ligeiramente inferior (0,40). Visando analisar o metabolismo das leveduras sob condições de anaerobiose e de limitação de oxigênio, foram realizados experimentos em biorreatores, onde a utilização de co-culturas produziu rendimentos de etanol similares em ambas condições (0,50-0,51) em meio sintético, enquanto que em RHH, rendimentos de 0,48 e 0,44 foram obtidos, respectivamente. Novas estratégias de produção de etanol a partir de hidrolisado de casca de arroz também foram testadas, como a sacarificação e co-fermentação simultânea por S. cerevisiae, Spathaspora arborariae e pela combinação destas leveduras. Nas culturas sob limitação de oxigênio, S. cerevisiae foi capaz de metabolizar a glicose presente RHH, resultando em um rendimento de etanol (YP/S) de 0,45. A co-cultura de S. cerevisiae e S. arborariae foi capaz de metabolizar pentoses e hexoses presentes em RHH, obtendo YP/S de 0,48 g g -1 e rendimento de xilitol (YX/X ) de 0,39 g g -1 e com o uso de sacarificação e co-fermentação simultânea produziu-se 14,5 e 3 g L-1 de etanol e xilitol, respectivamente. No hidrolisado de casca de soja (SHH), testou-se a capacidade das celulases provenientes do fungo Penicillium echinulatum S1M29, em aumentar a quantidade de açúcares no meio de hidrolisado. O rendimento de sacarificação foi de 72 %, quando foi utilizado 15 FPU g-1 de matéria seca, incubado num agitador orbital a 120 rpm, 50 ºC durante 96 h. Após a sacarificação, a capacidade das células imobilizadas de S. cerevisiae, C. shehatae, S. arborariae, ou a combinação de C. shehatae, S. arborariae com S. cerevisiae, para a conversão de açúcares presentes em SHH como substrato para a produção de etanol foi estudada. Os melhores coeficientes de rendimento de etanol (YP/S) foram de 0,45, 0,47 e 0,38, utilizando culturas puras de S. cerevisiae, C. shehatae, e S. arborariae respectivamente, e YP/S de 0,48 e 0,40 g g -1, para co-culturas de S. cerevisiae e C. shehatae ou S. arborariae, respectivamente. As leveduras com os melhores rendimentos de etanol (S. cerevisiae e C. shehatae) tiveram seu metabolismo testado em biorreatores imobilizados. Estas culturas em biorreatores produziram um rendimento do etanol de 0,49, para S. cerevisiae e 0,41 g g -1 usando C. shehatae. Visando a melhora do processo de fermentação do hidrolisado de casca de soja (HCS), realizaram-se experimentos estatísticos (Plackett-Burman e CCD), para diferentes condições operacionais e formulações do meio. Com o Plackett-Burman testou-se os efeitos da suplementação com quatro nutrientes (peptona, extrato de levedura, milhocina e Tween 80). Através do planejamento fatorial composto central (CCD) com quatro repetições no ponto central e seis pontos axiais, analisou-se os efeitos das condições de fermentação (temperatura, pH e tamanho do inóculo) para a produção de etanol por C . guilliermondii. Os resultados demonstraram que nenhuma suplementação do meio foi necessária, sendo C. guilliermondii capaz de crescer em hidrolisado não-suplementado e não-desintoxicado. As melhores condições de cultura foram determinadas pelo CCD como sendo de 28 °C, pH 5.0, e 109 UFC ml-1 de tamanho do inóculo, respectivamente. O coeficiente de produtividade de etanol atingiu um máximo de 1,4 g L-1 h-1 cerca de 80 % do rendimento teórico esperado, resultando em um coeficiente de rendimento de etanol (YP/S) de 0,41 g g-1. / The lignocellulosic agroindustrial residues such as rice hull and soybean hull are abundant and inexpensive wastes and can be used in biotechnological production of high value-added compounds such as ethanol and xylitol, like sources of cellulose and hemicellulose. In this paper was tested the ability of converting sugars from these wastes by different yeasts, using the knowledge about the biotechnological production of alcohols. The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. New technologies to produce ethanol from RHH were tested, with the simultaneous saccharification and co-fermentation by S. cerevisiae, Spathaspora arborariae and the combination of these yeasts. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45. In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and using simultaneous saccharification and co-fermentation with both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L-1 and 3 g L-1, respectively. In soybean hull hydrolysate (SHH), was studied the ability of cellulase from Penicillium echinulatum S1M29, to increase the amount of sugars in the hydrolysate medium. The saccharification yield was 72 % using 15 FPU g-1 dry matter on orbital shaker at 120 rpm, 50 °C for 96 h. After saccharification, the ability of immobilized cells of S. cerevisiae, C. shehatae, S. arborariae, or a combination of C. shehatae, S. arborariae with S. cerevisiae for the conversion of sugars present in SHH as a substrate for ethanol production was studied. In shaker cultivations, the bioconversion of SHH into ethanol showed yields (YP/S) of 0.43, 0.47, and 0.38, in cultures of S. cerevisiae, C. shehatae, and S.arborariae, respectively. Co-cultures of S. cerevisiae and C. shehatae or S. cerevisiae and S. arborariae, produced YP/S of 0.48 and 0.40, respectively. S. cerevisiae and C.shehatae were immobilized in Ca-alginate and cultivated in bioreactors to analyse the possibility of scaling up this process. Immobilized-cell cultures showed yields of 0.45 and 0.38, respectively. Aiming to improve the fermentation of soybean hull hydrolysate (HCS), operational conditions and medium formulation were optimized using statistical experimental designs (Plackett-Burman and CCD). Plackett-Burman was used to analysate the effects of supplementation with four nutrients (peptone, yeast extract, corn steep liquor and Tween 80). Using factorial central composite design (CCD) with four replications at the center point and six axial points, was examined the effects of fermentation conditions (temperature, pH, and inoculum size) for ethanol production by Candida guilliermondii BL13. Results showed that C. guilliermondii was capable of growing in non-supplemented, non-detoxified hydrolysate, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 inoculum size, respectively. Ethanol productivity peaked at 1.4 g L-1 h-1 and yields of 0.41 g g-1, about 80 % of expected theoretical yields, were observed.
|
4 |
Bioconversão de hidrolisados de casca de arroz e soja em etanol e xilitol por levedurasHickert, Lilian Raquel January 2014 (has links)
Os resíduos lignocelulósicos agroindustriais, como a casca de arroz e a casca de soja, são fontes abundantes e de baixo custo na produção biotecnológica de compostos de alto valor agregado como etanol e xilitol, por figurarem como fontes de celulose e hemicelulose. No presente trabalho será estudada a capacidade de conversão dos açúcares provenientes destes resíduos por diferentes leveduras ampliando os conhecimentos sobre a produção biotecnológica de alcoóis. A capacidade de Candida shehatae, Saccharomyces cerevisiae, e a co-cultura destas duas leveduras na conversão do açúcar presente no hidrolisado de casca de arroz (RHH) utilizado como substrato para a produção de etanol foi estudada. Em experimentos em agitador orbital, as co-culturas dessas leveduras apresentaram rendimentos de etanol (YP/S) de 0,42 e 0,51 em meio sintético simulando a composição do hidrolisado e em RHH, respectivamente. Ao analisar a produção de etanol com culturas puras de C. shehatae o rendimento de etanol foi ligeiramente inferior (0,40). Visando analisar o metabolismo das leveduras sob condições de anaerobiose e de limitação de oxigênio, foram realizados experimentos em biorreatores, onde a utilização de co-culturas produziu rendimentos de etanol similares em ambas condições (0,50-0,51) em meio sintético, enquanto que em RHH, rendimentos de 0,48 e 0,44 foram obtidos, respectivamente. Novas estratégias de produção de etanol a partir de hidrolisado de casca de arroz também foram testadas, como a sacarificação e co-fermentação simultânea por S. cerevisiae, Spathaspora arborariae e pela combinação destas leveduras. Nas culturas sob limitação de oxigênio, S. cerevisiae foi capaz de metabolizar a glicose presente RHH, resultando em um rendimento de etanol (YP/S) de 0,45. A co-cultura de S. cerevisiae e S. arborariae foi capaz de metabolizar pentoses e hexoses presentes em RHH, obtendo YP/S de 0,48 g g -1 e rendimento de xilitol (YX/X ) de 0,39 g g -1 e com o uso de sacarificação e co-fermentação simultânea produziu-se 14,5 e 3 g L-1 de etanol e xilitol, respectivamente. No hidrolisado de casca de soja (SHH), testou-se a capacidade das celulases provenientes do fungo Penicillium echinulatum S1M29, em aumentar a quantidade de açúcares no meio de hidrolisado. O rendimento de sacarificação foi de 72 %, quando foi utilizado 15 FPU g-1 de matéria seca, incubado num agitador orbital a 120 rpm, 50 ºC durante 96 h. Após a sacarificação, a capacidade das células imobilizadas de S. cerevisiae, C. shehatae, S. arborariae, ou a combinação de C. shehatae, S. arborariae com S. cerevisiae, para a conversão de açúcares presentes em SHH como substrato para a produção de etanol foi estudada. Os melhores coeficientes de rendimento de etanol (YP/S) foram de 0,45, 0,47 e 0,38, utilizando culturas puras de S. cerevisiae, C. shehatae, e S. arborariae respectivamente, e YP/S de 0,48 e 0,40 g g -1, para co-culturas de S. cerevisiae e C. shehatae ou S. arborariae, respectivamente. As leveduras com os melhores rendimentos de etanol (S. cerevisiae e C. shehatae) tiveram seu metabolismo testado em biorreatores imobilizados. Estas culturas em biorreatores produziram um rendimento do etanol de 0,49, para S. cerevisiae e 0,41 g g -1 usando C. shehatae. Visando a melhora do processo de fermentação do hidrolisado de casca de soja (HCS), realizaram-se experimentos estatísticos (Plackett-Burman e CCD), para diferentes condições operacionais e formulações do meio. Com o Plackett-Burman testou-se os efeitos da suplementação com quatro nutrientes (peptona, extrato de levedura, milhocina e Tween 80). Através do planejamento fatorial composto central (CCD) com quatro repetições no ponto central e seis pontos axiais, analisou-se os efeitos das condições de fermentação (temperatura, pH e tamanho do inóculo) para a produção de etanol por C . guilliermondii. Os resultados demonstraram que nenhuma suplementação do meio foi necessária, sendo C. guilliermondii capaz de crescer em hidrolisado não-suplementado e não-desintoxicado. As melhores condições de cultura foram determinadas pelo CCD como sendo de 28 °C, pH 5.0, e 109 UFC ml-1 de tamanho do inóculo, respectivamente. O coeficiente de produtividade de etanol atingiu um máximo de 1,4 g L-1 h-1 cerca de 80 % do rendimento teórico esperado, resultando em um coeficiente de rendimento de etanol (YP/S) de 0,41 g g-1. / The lignocellulosic agroindustrial residues such as rice hull and soybean hull are abundant and inexpensive wastes and can be used in biotechnological production of high value-added compounds such as ethanol and xylitol, like sources of cellulose and hemicellulose. In this paper was tested the ability of converting sugars from these wastes by different yeasts, using the knowledge about the biotechnological production of alcohols. The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. New technologies to produce ethanol from RHH were tested, with the simultaneous saccharification and co-fermentation by S. cerevisiae, Spathaspora arborariae and the combination of these yeasts. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45. In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and using simultaneous saccharification and co-fermentation with both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L-1 and 3 g L-1, respectively. In soybean hull hydrolysate (SHH), was studied the ability of cellulase from Penicillium echinulatum S1M29, to increase the amount of sugars in the hydrolysate medium. The saccharification yield was 72 % using 15 FPU g-1 dry matter on orbital shaker at 120 rpm, 50 °C for 96 h. After saccharification, the ability of immobilized cells of S. cerevisiae, C. shehatae, S. arborariae, or a combination of C. shehatae, S. arborariae with S. cerevisiae for the conversion of sugars present in SHH as a substrate for ethanol production was studied. In shaker cultivations, the bioconversion of SHH into ethanol showed yields (YP/S) of 0.43, 0.47, and 0.38, in cultures of S. cerevisiae, C. shehatae, and S.arborariae, respectively. Co-cultures of S. cerevisiae and C. shehatae or S. cerevisiae and S. arborariae, produced YP/S of 0.48 and 0.40, respectively. S. cerevisiae and C.shehatae were immobilized in Ca-alginate and cultivated in bioreactors to analyse the possibility of scaling up this process. Immobilized-cell cultures showed yields of 0.45 and 0.38, respectively. Aiming to improve the fermentation of soybean hull hydrolysate (HCS), operational conditions and medium formulation were optimized using statistical experimental designs (Plackett-Burman and CCD). Plackett-Burman was used to analysate the effects of supplementation with four nutrients (peptone, yeast extract, corn steep liquor and Tween 80). Using factorial central composite design (CCD) with four replications at the center point and six axial points, was examined the effects of fermentation conditions (temperature, pH, and inoculum size) for ethanol production by Candida guilliermondii BL13. Results showed that C. guilliermondii was capable of growing in non-supplemented, non-detoxified hydrolysate, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 inoculum size, respectively. Ethanol productivity peaked at 1.4 g L-1 h-1 and yields of 0.41 g g-1, about 80 % of expected theoretical yields, were observed.
|
5 |
Bioconversão de hidrolisados de casca de arroz e soja em etanol e xilitol por levedurasHickert, Lilian Raquel January 2014 (has links)
Os resíduos lignocelulósicos agroindustriais, como a casca de arroz e a casca de soja, são fontes abundantes e de baixo custo na produção biotecnológica de compostos de alto valor agregado como etanol e xilitol, por figurarem como fontes de celulose e hemicelulose. No presente trabalho será estudada a capacidade de conversão dos açúcares provenientes destes resíduos por diferentes leveduras ampliando os conhecimentos sobre a produção biotecnológica de alcoóis. A capacidade de Candida shehatae, Saccharomyces cerevisiae, e a co-cultura destas duas leveduras na conversão do açúcar presente no hidrolisado de casca de arroz (RHH) utilizado como substrato para a produção de etanol foi estudada. Em experimentos em agitador orbital, as co-culturas dessas leveduras apresentaram rendimentos de etanol (YP/S) de 0,42 e 0,51 em meio sintético simulando a composição do hidrolisado e em RHH, respectivamente. Ao analisar a produção de etanol com culturas puras de C. shehatae o rendimento de etanol foi ligeiramente inferior (0,40). Visando analisar o metabolismo das leveduras sob condições de anaerobiose e de limitação de oxigênio, foram realizados experimentos em biorreatores, onde a utilização de co-culturas produziu rendimentos de etanol similares em ambas condições (0,50-0,51) em meio sintético, enquanto que em RHH, rendimentos de 0,48 e 0,44 foram obtidos, respectivamente. Novas estratégias de produção de etanol a partir de hidrolisado de casca de arroz também foram testadas, como a sacarificação e co-fermentação simultânea por S. cerevisiae, Spathaspora arborariae e pela combinação destas leveduras. Nas culturas sob limitação de oxigênio, S. cerevisiae foi capaz de metabolizar a glicose presente RHH, resultando em um rendimento de etanol (YP/S) de 0,45. A co-cultura de S. cerevisiae e S. arborariae foi capaz de metabolizar pentoses e hexoses presentes em RHH, obtendo YP/S de 0,48 g g -1 e rendimento de xilitol (YX/X ) de 0,39 g g -1 e com o uso de sacarificação e co-fermentação simultânea produziu-se 14,5 e 3 g L-1 de etanol e xilitol, respectivamente. No hidrolisado de casca de soja (SHH), testou-se a capacidade das celulases provenientes do fungo Penicillium echinulatum S1M29, em aumentar a quantidade de açúcares no meio de hidrolisado. O rendimento de sacarificação foi de 72 %, quando foi utilizado 15 FPU g-1 de matéria seca, incubado num agitador orbital a 120 rpm, 50 ºC durante 96 h. Após a sacarificação, a capacidade das células imobilizadas de S. cerevisiae, C. shehatae, S. arborariae, ou a combinação de C. shehatae, S. arborariae com S. cerevisiae, para a conversão de açúcares presentes em SHH como substrato para a produção de etanol foi estudada. Os melhores coeficientes de rendimento de etanol (YP/S) foram de 0,45, 0,47 e 0,38, utilizando culturas puras de S. cerevisiae, C. shehatae, e S. arborariae respectivamente, e YP/S de 0,48 e 0,40 g g -1, para co-culturas de S. cerevisiae e C. shehatae ou S. arborariae, respectivamente. As leveduras com os melhores rendimentos de etanol (S. cerevisiae e C. shehatae) tiveram seu metabolismo testado em biorreatores imobilizados. Estas culturas em biorreatores produziram um rendimento do etanol de 0,49, para S. cerevisiae e 0,41 g g -1 usando C. shehatae. Visando a melhora do processo de fermentação do hidrolisado de casca de soja (HCS), realizaram-se experimentos estatísticos (Plackett-Burman e CCD), para diferentes condições operacionais e formulações do meio. Com o Plackett-Burman testou-se os efeitos da suplementação com quatro nutrientes (peptona, extrato de levedura, milhocina e Tween 80). Através do planejamento fatorial composto central (CCD) com quatro repetições no ponto central e seis pontos axiais, analisou-se os efeitos das condições de fermentação (temperatura, pH e tamanho do inóculo) para a produção de etanol por C . guilliermondii. Os resultados demonstraram que nenhuma suplementação do meio foi necessária, sendo C. guilliermondii capaz de crescer em hidrolisado não-suplementado e não-desintoxicado. As melhores condições de cultura foram determinadas pelo CCD como sendo de 28 °C, pH 5.0, e 109 UFC ml-1 de tamanho do inóculo, respectivamente. O coeficiente de produtividade de etanol atingiu um máximo de 1,4 g L-1 h-1 cerca de 80 % do rendimento teórico esperado, resultando em um coeficiente de rendimento de etanol (YP/S) de 0,41 g g-1. / The lignocellulosic agroindustrial residues such as rice hull and soybean hull are abundant and inexpensive wastes and can be used in biotechnological production of high value-added compounds such as ethanol and xylitol, like sources of cellulose and hemicellulose. In this paper was tested the ability of converting sugars from these wastes by different yeasts, using the knowledge about the biotechnological production of alcohols. The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. New technologies to produce ethanol from RHH were tested, with the simultaneous saccharification and co-fermentation by S. cerevisiae, Spathaspora arborariae and the combination of these yeasts. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45. In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and using simultaneous saccharification and co-fermentation with both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L-1 and 3 g L-1, respectively. In soybean hull hydrolysate (SHH), was studied the ability of cellulase from Penicillium echinulatum S1M29, to increase the amount of sugars in the hydrolysate medium. The saccharification yield was 72 % using 15 FPU g-1 dry matter on orbital shaker at 120 rpm, 50 °C for 96 h. After saccharification, the ability of immobilized cells of S. cerevisiae, C. shehatae, S. arborariae, or a combination of C. shehatae, S. arborariae with S. cerevisiae for the conversion of sugars present in SHH as a substrate for ethanol production was studied. In shaker cultivations, the bioconversion of SHH into ethanol showed yields (YP/S) of 0.43, 0.47, and 0.38, in cultures of S. cerevisiae, C. shehatae, and S.arborariae, respectively. Co-cultures of S. cerevisiae and C. shehatae or S. cerevisiae and S. arborariae, produced YP/S of 0.48 and 0.40, respectively. S. cerevisiae and C.shehatae were immobilized in Ca-alginate and cultivated in bioreactors to analyse the possibility of scaling up this process. Immobilized-cell cultures showed yields of 0.45 and 0.38, respectively. Aiming to improve the fermentation of soybean hull hydrolysate (HCS), operational conditions and medium formulation were optimized using statistical experimental designs (Plackett-Burman and CCD). Plackett-Burman was used to analysate the effects of supplementation with four nutrients (peptone, yeast extract, corn steep liquor and Tween 80). Using factorial central composite design (CCD) with four replications at the center point and six axial points, was examined the effects of fermentation conditions (temperature, pH, and inoculum size) for ethanol production by Candida guilliermondii BL13. Results showed that C. guilliermondii was capable of growing in non-supplemented, non-detoxified hydrolysate, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 inoculum size, respectively. Ethanol productivity peaked at 1.4 g L-1 h-1 and yields of 0.41 g g-1, about 80 % of expected theoretical yields, were observed.
|
6 |
Enzymatisk hydrolys : Optimerad hydrolysprocess för fotosyntetiska bakterier och mikroalger / Enzymatic hydrolysis : optimized hydrolysis process for photosynthetic bacteriaand microalgae biomassErsoy, Selin January 2024 (has links)
This thesis project is a contribution to addressing the pressing need for sustainable alternatives to fossil fuels and traditional plastics. The work focuses on enzymatic saccharification of microalgae biomass to generate a sugar-rich stream as raw material for biofuels and bioplastics production. Microalgae and cyanobacteria are highlighted for their ability to convert CO2 into valuable biomass components in the presence of light. To enhance biomass conversion efficiency, the enzymatic hydrolysis of microalgae and cyanobacteria is explored by utilizing various enzymes to break down complex polymers into valuable sugars. Additionally, the cultivation of cyanobacteria is studied to optimize the overall process. Results indicate challenges, such as measurement uncertainty and the need for biomass pretreatment, suggesting areas for further research. The primary objective of this thesis work is to optimize enzymatic hydrolysis processes by determining the optimal combinations of enzymes, to enhance biomass conversion efficiency. It also underscores the importance of microorganisms in transitioning to a more environmentally friendly future by offering sustainable alternatives to conventional products.
|
7 |
Fracionamento do bagaço de cana-de-açúcar com solventes apropriados para a dissolução dos constituintes estruturais / Fractionation of sugarcane bagasse with solvents that promote the dissolution of structural constituentsSiqueira, Luciane do Nascimento 17 November 2014 (has links)
Uma tecnologia para o fracionamento de materiais lignocelulósicos, baseada no uso de solventes apropriados, foi proposta para separar os principais componentes (celulose, hemicelulose e lignina). De acordo com a técnica, é adicionado ao material um solvente para celulose (ácido fosfórico concentrado); então, acetona é adicionada para promover a precipitação da celulose na forma amorfa. As etapas subsequentes são as seguintes: uma primeira extração com acetona para remover a lignina; e uma segunda extração com água, para remover a hemicelulose. Estudos aplicando o fracionamento, denominado \"COSLIF\" (\"cellulose solvent and organic solvent based lignocellulose fractionation\"), em diferentes materiais demonstraram altas taxas e rendimentos de hidrólise da celulose em presença de baixas cargas enzimáticas. Neste contexto, o objetivo do trabalho foi definir condições apropriadas para fracionar o bagaço de cana-de-açúcar usando o fracionamento COSLIF, com vistas à produção de etanol de 2ª geração. Para otimização das condições de fracionamento, foi realizado um planejamento fatorial 25, com as seguintes variáveis: concentração de ácido fosfórico (81-85 %), temperatura (40-60 ºC), tempo (30-120 min), volume de acetona (80-120 mL) e volume de água (120-160 mL), determinando, a partir da composição das frações geradas, parâmetros relacionados à recuperação e seletividade do fracionamento. Apesar de grande variabilidade experimental, conseguiu-se definir a condição ótima por meio de análise estatística, para o fracionamento de 1 g de bagaço (massa seca): ácido fosfórico (83,8 %), temperatura (45,8 ºC), tempo (56,1 min), volume de acetona (91,6 mL) e volume de água (131,6 mL). Esta condição, reproduzida em escala ampliada, foi eficaz na amorfização da celulose e na separação da hemicelulose no extrato aquoso. O rendimento global (RG + X (S + L)) obtido foi de 87,1%; o rendimento de recuperação de glucana na fração sólida (RG(S)) foi de 84,6%; e o rendimento de recuperação de xilana na fração líquida (RX(L)) foi de 61,0%. Em relação à seletividade de recuperação de glucana na fração sólida (SG(S)) foi obtido 95,3%; e à seletividade de recuperação de xilana na fração líquida (SX(L)), foi obtido 72,7%. A análise estrutural da fração sólida, por meio de difração de raios-X e termoporometria, demonstrou que a tecnologia consegue romper a estrutura do material, diminuindo a cristalinidade e aumentando a porosidade. O índice de cristalinidade, que no bagaço \"in natura\" era de 44%, foi reduzido para 0; a área superficial cumulativa para moléculas com diâmetros de até 10 nm, que no bagaço \"in natura\", era de 43 m2/g, foi aumentada para 166 m2/g. Aliada à remoção de hemicelulose, tais alterações proporcionaram elevada eficiência de sacarificação da glucana em glicose; 93%, em 24 horas de hidrólise. O hidrolisado enzimático foi fermentado por Scheffersomyces stipitis, com produção de 10,5 g/L de etanol em 48 horas de fermentação; o rendimento de conversão de glicose em etanol (YP/S) foi de 0,36 g/g, com produtividade volumétrica (QP) de 0,22 g/Lh. / A technology for fractionating lignocellulosic materials, based on the use of suitable solvents, was proposed to separate the main components (cellulose, hemicellulose and lignin). According to the technique, a solvent for cellulose (concentrated phosphoric acid) is added to the material, then, acetone is added to promote precipitation of the cellulose in an amorphous form. The subsequent steps are as follows: a first extraction with acetone, to remove lignin, and a second extraction with water, to remove hemicellulose. Studies applying the fractionation, called \"COSLIF\" (\"cellulose solvent and organic solvent based lignocellulose fractionation\"), to different materials demonstrated the high rates and yields of cellulose hydrolysis in the presence of low enzymes loadings. In this context, the objective of the present study was to define appropriate conditions to fractionate the sugarcane bagasse of using the COSLIF procedure, aiming the production of 2nd generation ethanol. To optimize the conditions of fractionation, we performed a 25 factorial design, with the following variables: concentration of phosphoric acid (81-85%), temperature (40-60° C), time (30-120 min), volume of acetone (80-120 mL) and volume of water (120-160 mL), determining, from the composition of the generated fractions, the parameters of recovery and selectivity. Despite of high experimental variability, it was possible to define optimum condition, by means of statistical analysis, for the fractionation of 1 g of bagasse (dry weight): phosphoric acid (83,8%), temperature (45,8° C), time (56,1 min), volume of acetone (91,6 mL) and volume of water (131,6 mL). This condition, reproduced at a larger scale, was effective in the amorphization of cellulose and in the separation of hemicellulose in the aqueous extract. The overall yield (RG + X (S + L)) was 87,1%. The recovery yield of glucan in the solid fraction (GR (S)) was 84,6%, and the recovery yield of xylan in the liquid fraction (RX (L)) was 61,0%. The selectivity of glucan recovery in the solid fraction (SG (S)) was 95,3%, the selectivity of xylan recovery in the liquid fraction (SX (G)) was 72,7%. The structural analysis of the solid fraction, by means of X-ray diffraction and thermoporometry, demonstrated that the technology can disrupt the structure of the material, decreasing the crystallinity and increasing the porosity. The index of crystallinity, which in the \"in natura\" bagasse was 44%, was reduced to 0, the surface area cumulative to molecules with diameters up to 10 nm, which in the \"in natura\" bagasse was 43 m2/g, was increased to 166 m2/g. Coupled with the removal of hemicellulose, such changes provided high efficiency of saccharification of glucan into glucose, 93% in 24 hours of hydrolysis. The enzymatic hydrolyzate was fermented by Scheffersomyces stipitis, producing 10,5 g/L ethanol in 48 hours of fermentation, the conversion efficiency of glucose into ethanol (YP/S) was 0,36 g/g, and the volumetric productivity (QP) was 0,22 g/Lhr.
|
8 |
Fracionamento do bagaço de cana-de-açúcar com solventes apropriados para a dissolução dos constituintes estruturais / Fractionation of sugarcane bagasse with solvents that promote the dissolution of structural constituentsLuciane do Nascimento Siqueira 17 November 2014 (has links)
Uma tecnologia para o fracionamento de materiais lignocelulósicos, baseada no uso de solventes apropriados, foi proposta para separar os principais componentes (celulose, hemicelulose e lignina). De acordo com a técnica, é adicionado ao material um solvente para celulose (ácido fosfórico concentrado); então, acetona é adicionada para promover a precipitação da celulose na forma amorfa. As etapas subsequentes são as seguintes: uma primeira extração com acetona para remover a lignina; e uma segunda extração com água, para remover a hemicelulose. Estudos aplicando o fracionamento, denominado \"COSLIF\" (\"cellulose solvent and organic solvent based lignocellulose fractionation\"), em diferentes materiais demonstraram altas taxas e rendimentos de hidrólise da celulose em presença de baixas cargas enzimáticas. Neste contexto, o objetivo do trabalho foi definir condições apropriadas para fracionar o bagaço de cana-de-açúcar usando o fracionamento COSLIF, com vistas à produção de etanol de 2ª geração. Para otimização das condições de fracionamento, foi realizado um planejamento fatorial 25, com as seguintes variáveis: concentração de ácido fosfórico (81-85 %), temperatura (40-60 ºC), tempo (30-120 min), volume de acetona (80-120 mL) e volume de água (120-160 mL), determinando, a partir da composição das frações geradas, parâmetros relacionados à recuperação e seletividade do fracionamento. Apesar de grande variabilidade experimental, conseguiu-se definir a condição ótima por meio de análise estatística, para o fracionamento de 1 g de bagaço (massa seca): ácido fosfórico (83,8 %), temperatura (45,8 ºC), tempo (56,1 min), volume de acetona (91,6 mL) e volume de água (131,6 mL). Esta condição, reproduzida em escala ampliada, foi eficaz na amorfização da celulose e na separação da hemicelulose no extrato aquoso. O rendimento global (RG + X (S + L)) obtido foi de 87,1%; o rendimento de recuperação de glucana na fração sólida (RG(S)) foi de 84,6%; e o rendimento de recuperação de xilana na fração líquida (RX(L)) foi de 61,0%. Em relação à seletividade de recuperação de glucana na fração sólida (SG(S)) foi obtido 95,3%; e à seletividade de recuperação de xilana na fração líquida (SX(L)), foi obtido 72,7%. A análise estrutural da fração sólida, por meio de difração de raios-X e termoporometria, demonstrou que a tecnologia consegue romper a estrutura do material, diminuindo a cristalinidade e aumentando a porosidade. O índice de cristalinidade, que no bagaço \"in natura\" era de 44%, foi reduzido para 0; a área superficial cumulativa para moléculas com diâmetros de até 10 nm, que no bagaço \"in natura\", era de 43 m2/g, foi aumentada para 166 m2/g. Aliada à remoção de hemicelulose, tais alterações proporcionaram elevada eficiência de sacarificação da glucana em glicose; 93%, em 24 horas de hidrólise. O hidrolisado enzimático foi fermentado por Scheffersomyces stipitis, com produção de 10,5 g/L de etanol em 48 horas de fermentação; o rendimento de conversão de glicose em etanol (YP/S) foi de 0,36 g/g, com produtividade volumétrica (QP) de 0,22 g/Lh. / A technology for fractionating lignocellulosic materials, based on the use of suitable solvents, was proposed to separate the main components (cellulose, hemicellulose and lignin). According to the technique, a solvent for cellulose (concentrated phosphoric acid) is added to the material, then, acetone is added to promote precipitation of the cellulose in an amorphous form. The subsequent steps are as follows: a first extraction with acetone, to remove lignin, and a second extraction with water, to remove hemicellulose. Studies applying the fractionation, called \"COSLIF\" (\"cellulose solvent and organic solvent based lignocellulose fractionation\"), to different materials demonstrated the high rates and yields of cellulose hydrolysis in the presence of low enzymes loadings. In this context, the objective of the present study was to define appropriate conditions to fractionate the sugarcane bagasse of using the COSLIF procedure, aiming the production of 2nd generation ethanol. To optimize the conditions of fractionation, we performed a 25 factorial design, with the following variables: concentration of phosphoric acid (81-85%), temperature (40-60° C), time (30-120 min), volume of acetone (80-120 mL) and volume of water (120-160 mL), determining, from the composition of the generated fractions, the parameters of recovery and selectivity. Despite of high experimental variability, it was possible to define optimum condition, by means of statistical analysis, for the fractionation of 1 g of bagasse (dry weight): phosphoric acid (83,8%), temperature (45,8° C), time (56,1 min), volume of acetone (91,6 mL) and volume of water (131,6 mL). This condition, reproduced at a larger scale, was effective in the amorphization of cellulose and in the separation of hemicellulose in the aqueous extract. The overall yield (RG + X (S + L)) was 87,1%. The recovery yield of glucan in the solid fraction (GR (S)) was 84,6%, and the recovery yield of xylan in the liquid fraction (RX (L)) was 61,0%. The selectivity of glucan recovery in the solid fraction (SG (S)) was 95,3%, the selectivity of xylan recovery in the liquid fraction (SX (G)) was 72,7%. The structural analysis of the solid fraction, by means of X-ray diffraction and thermoporometry, demonstrated that the technology can disrupt the structure of the material, decreasing the crystallinity and increasing the porosity. The index of crystallinity, which in the \"in natura\" bagasse was 44%, was reduced to 0, the surface area cumulative to molecules with diameters up to 10 nm, which in the \"in natura\" bagasse was 43 m2/g, was increased to 166 m2/g. Coupled with the removal of hemicellulose, such changes provided high efficiency of saccharification of glucan into glucose, 93% in 24 hours of hydrolysis. The enzymatic hydrolyzate was fermented by Scheffersomyces stipitis, producing 10,5 g/L ethanol in 48 hours of fermentation, the conversion efficiency of glucose into ethanol (YP/S) was 0,36 g/g, and the volumetric productivity (QP) was 0,22 g/Lhr.
|
9 |
Fuel Yield Potential of Field Grown Agave americana L. Based on Water Soluble Carbohydrates, Acid Extractable Carbohydrates, and Enzymatic Digestibility Compared to Other Advanced Biofuel FeedstocksJones, Alexander M. 19 September 2017 (has links)
No description available.
|
Page generated in 0.1217 seconds