• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 20
  • 13
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 227
  • 227
  • 44
  • 40
  • 31
  • 29
  • 28
  • 21
  • 20
  • 19
  • 18
  • 15
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Estudo cin?tico da atividade anticolinester?sica de derivados ?- Carbol?nicos do produto natural harmana

Torres, Juliana Mariano 22 July 2011 (has links)
Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-01T17:07:57Z No. of bitstreams: 1 2011 - Juliana Mariano Torres.pdf: 1156662 bytes, checksum: 6ae713d0002e13c804fc2eba73bd8f5b (MD5) / Made available in DSpace on 2016-08-01T17:07:57Z (GMT). No. of bitstreams: 1 2011 - Juliana Mariano Torres.pdf: 1156662 bytes, checksum: 6ae713d0002e13c804fc2eba73bd8f5b (MD5) Previous issue date: 2011-07-22 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico, CNPq. / The increase in life expectancy is a worldwide occurrence that shows the relative success of public health politics, and Brazil is among the countries where people are living longer and in better physical health. But the increase in life expectancy has a negative effect: the appearance of degenerative diseases typical of old age, including several forms of dementia, like Alzheimer?s Disease (AD) that is certainly the most important. It is an irreversible and progressive disease characterized by neuronal deterioration that results in loss of cognitive functions such as memory, communication skills, judgment and reasoning. Donepezil, rivastigmine and galantamine are medicines used for the treatment of AD and act reversibly inhibiting the acetylcholinesterase (AChE). Evidences suggest that the enzyme butyrylcholinesterase (BChE), closely related to AChE, plays a significant role in AD because it is involved in neural functions such as cholinergic co-regulation and non-cholinergic neurotransmission. The aim of this research is to provide new substances with anticholinesterase action by using ?-carboline derivatives from the natural product harmane and carry out a kinetic study to determine the inhibition profile of the enzymes AChE e BChE, which could help in the discovery of new compounds which could be useful in the treatment of AD. Firstly, a screening was carried out with seven ?-carboline derivatives. In a second stage, a kinetic investigation, employing Ellman?s method, was run with these compounds and all of them presented high anticholinesterase action for both AChE and BChE. All seven derivatives presented a non-competitive reversible inhibition. / Torres, Juliana Mariano. ESTUDO CIN?TICO DA ATIVIDADE ANTICOLINESTER?SICA DE DERIVADOS -CARBOL?NICOS DO PRODUTO NATURAL HARMANA. 2011. Disserta??o (mestrado em Qu?mica Org?nica). Instituto de Ci?ncias Exatas, Departamento de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2011. O aumento da expectativa de vida ? um fen?meno mundial que mostra o relativo sucesso de pol?ticas de sa?de p?blica, e o Brasil se inclui entre os pa?ses em que as pessoas est?o vivendo por mais tempo e em condi??es melhores de sa?de. No entanto, o aumento da expectativa de vida tem como efeito negativo o aparecimento de doen?as degenerativas, t?picas de idades mais avan?adas, incluindo-se as v?rias formas de dem?ncia e entre estas, a mais importante ?, sem d?vida, a Doen?a de Alzheimer (DA), patologia irrevers?vel e progressiva caracterizada pela deteriora??o neuronal que resulta em perda de fun??es cognitivas, tais como mem?ria, capacidade de comunica??o, julgamento e racioc?nio. Para o tratamento da DA s?o utilizados f?rmacos como o donepezil, galantamina e rivastigmina, os quais agem inibindo revers?velmente a acetilcolinesterase (AChE). Evid?ncias sugerem que a enzima butirilcolinesterase (BChE), intimamente relacionada com a AChE, tem um papel significante na DA, uma vez que est? envolvida em fun??es neurais tais como a corregula??o da neurotransmiss?o colin?rgica e n?o-colin?rgica. Esta pesquisa pretendeu estudar novas subst?ncias com a??o anticolinester?sica utilizando derivados -carbol?nicos do produto natural harmana, bem como fazer um estudo cin?tico a fim de descobrir qual o perfil de inibi??o das enzimas AChE e BChE, a fim de buscar novos compostos que poderiam ser ?teis no tratamento dos sintomas da DA. Desta forma, foi efetuada preliminarmente uma triagem com 7 derivados -carbol?nicos e posteriormente foi realizada uma investiga??o cin?tica com estes compostos, uma vez que, todos apresentaram alta a??o anticolinester?sica tanto para AChE quanto para BChE. A cin?tica enzim?tica foi estudada segundo o m?todo de Ellman. Contudo, observou-se que todos os 7 derivados apresentaram uma inibi??o revers?vel n?o competitiva.
152

Estudos da correlação estrutura-função da enzima Clorocatecol 1,2-Dioxigenase de Pseudomonas putida / Studies of the structure-function correlation of the chlorocatechol 1,2-dioxygenase enzyme from Pseudomonas putida

Mesquita, Nathalya Cristina de Moraes Roso 13 February 2012 (has links)
O intenso uso de compostos orgânicos em conjunto com o grande avanço industrial culminou em um enorme acúmulo de poluentes orgânicos no meio ambiente. Dentre estes poluentes têm-se destacado a presença de hidrocarbonetos aromáticos altamente tóxicos e resistentes à degradação física, química, fotolítica e biológica. Desta maneira, uma nova forma de combater a presença deste tipo de composto no meio ambiente têm sido estudada: o uso de microorganismos, naturais ou geneticamente modificados, capazes de transformá-los em substâncias inertes, como CO2 e água. Tal metodologia é denominada biorremediação. Dentres estes microorganismos destacam-se bactérias dos gêneros Pseudomonas, Aeromonas, Beijerinckia, dentre outros, que têm sido estudadas para esta finalidade. A enzima clorocatecol 1,2-dioxigenase (Pp 1,2-CCD) é uma das proteínas expressas por bactérias do gênero Pseudomonas putida, sendo responsável pela clivagem de hidrocarbonetos aromáticos através da incorporação de ambos os átomos de uma molécula de oxigênio à estrutura do anel aromático, sendo a proteína escolhida para desenvolvermos o presente trabalho. Mais especificamente, nos interessa estudar como o mecanismo de ação da referida enzima é controlado por moléculas extrínsecas, como fosfolipídios. Tal interesse pela interação entre a enzima e fosfolipídios surgiu recentemente quando da obtenção da primeira estrutura cristalográfica de uma enzima da família da CCD (dioxigenases intradióis). Nesta estrutura foi observado um sítio de ligação por monômero para fosfolipídios, o que fez com que várias questões relativas à influência desses sobre a atividade da enzima fossem levantadas. Nosso objetivo foi fazer uso das técnicas de Dicroísmo Circular (CD), Calorimetria e Ressonância Paramagnética Eletrônica (RPE) para estudar alterações conformacionais da enzima e de sua cinética induzidas por moléculas de fosfolipídio, e assim, obter informações que correlacionem as mudanças estruturais com o mecanismo de atividade enzimática da enzima. Os resultados obtidos através do uso daquelas técnicas em conjunto com protocolos que possibilitam a delipidação da enzima mostraram que a presença do fosfolipídios na estrutura da enzima tem influência sobre a atividade enzimática. Quando retiramos o fosfolipídio/ácido graxo, pudemos visualizar uma pequena mudança na estrutura secundária da enzima, um aumento da entalpia de reação, bem como um aumento na velocidade de reação, enquanto que a afinidade da enzima pelo substrato diminuiu. Pudemos também observar uma maior estabilidade térmica da enzima quando na ausência do fosfolipídio/ácido graxo e não foi observado interação da Pp 1,2-CCD com modelos micelares constituídos por lisofosfolipídios. Um breve estudo realizado sobre o papel da força iônica na atividade e na estabilidade térmica da proteína mostrou que na ausência de NaCl, em pH 8, a enzima se mostrou mais ativa, com uma afinidade pelo substrato maior e neste ambiente com baixa força iônica foi observado uma pequena interação da enzima com modelos micelares carregados negativamente. Assim, pudemos concluir que as moléculas anfipáticas, retiradas com os processos de delipidação, apesar de modificarem muito pouco a estrutura secundária da enzima, ainda assim instauram modificações na sua função de catálise do substrato catecol. Esta informação juntamente com os dados sobre inibição do processo reacional ocasionada pelo produto da reação formam um novo conjunto de dados que pode ser utilizado para se alcançar o objetivo mais geral de se controlar a atividade biológica da Pp 1,2-CCD. / The intensive use of organic compounds in conjunction with the industrial advances led to a huge accumulation of organic pollutants in the environment. Among these pollutants it has been noticed the presence of aromatic hydrocarbons that are highly toxic and resistant to physical, chemical and biological degradation. Thus, a new way to deal with the presence of this compounds in the environment has been studied: the use of microorganisms, natural or genetically modified, that can turn them into inert substances such as CO2 and water. This methodology is called bioremediation. Among those microorganisms, bacteria from the gender Pseudomonas, Aeromonas, Beijerinckia, among others, have been studied for this purpose. The enzyme chlorocatechol 1,2-dioxygenase (Pp 1,2-CCD) is one of the proteins expressed by Pseudomonas putida bacteria, being responsible for the cleavage of aromatic hydrocarbons through the incorporation of both atoms of a molecule of oxygen into the aromatic ring structure, being the protein chosen for investigation in this work. More specifically, we are interested in studying how the mechanism of action of this enzyme is controlled by extrinsic molecules such as phospholipids. The interest in the interaction between the enzyme and phospholipids arose recently when the first crystal structure of an enzyme of the intradiol dioxygenase family was reported. In this structure it was observed a binding site for a phospholipid per monomer, which raised many issues concerning its influence on the activity of the enzyme. Our goal was to use the techniques of Circular Dichroism (CD), calorimetry and Electron Magnetic Resonance (EMR) to study enzyme conformational changes and kinetics alterations induced by phospholipid molecules, thus gathering information on the structure-function correlation. The results obtained through those experimental techniques in conjunction with the use of protocols for protein delipidation showed that the presence of phospholipids/fatty acids in the structure of the enzyme play a role in enzyme activity. Upon removal of the phospholipid/fatty acids, we observed small changes in the secondary structure of the enzyme, an increase of the enthalpy of reactions as well as an increase in the reaction rate, whereas the affinity of the enzyme for the substrate decreased. We also observed a higher thermal stability of the Pp 1,2-CCD in the absence of the phospholipids/fatty acids, but no interaction was observed between the Pp 1,2-CCD and lysophospholipid micelles. A brief study of the function of ionic strength on the activity and thermal stability of the protein showed that in the absence of NaCl, at pH 8, the enzyme is more active, showing a greater affinity for the substrate and a low interaction was observed between Pp 1,2-CCD and negatively charged micelles. This information along with the data on the inhibition capacity of the reaction product are a new set of data that can be used to achieve the more general goal of controlling Pp 1,2-CCD biological activity.
153

Molecular Docking, Synthesis and Evaluation of Pyrrolo[2,1-c][1,4]benzodiazepines Derivatives as Non-β-lactam β-lactamases Inhibitors

Osazee, Joseph Osamudiamen 01 August 2016 (has links)
Our research aim was to design, synthesize, and study the competitive enzyme inhibition kinetics of pyrrolo[2,1-c][1,4]benzodiazepine (PBD) derivatives as potential non-²-lactam ²-lactamase inhibitors. All compounds (1-13) passed the Lipinski’s rule of 5 test and were docked into the active site of TEM-1 ²-lactamase. PBD derivatives 1-7 were synthesized in high yields and tested for their potency against TEM-1 and P99 ²-lactamases. Kinetic data showed that compounds 1, 4, 5, and 7 possessed inhibitory activity against TEM-1 ranging from 4-34 %. Docking results revealed significant interactive spanning of the active site of TEM-1 by PBDs. The limited inhibitory activity of the compounds, 1-7 could be attributed to the lack of solubility and bulky nature of the molecules, thus limiting the optimal ligand-enzyme interactions. 1,2,4- Oxadiazolinones (8-13) were further synthesized to reduce the steric hindrance of the PBD scaffolds while promoting the electrophilicity of the potentially active lactam and also evaluated for potency.
154

Synthesis, Characterization and Biological Evaluation of Pyrrolo[2,1-c][1,4]benzodiazepines for Cytotoxicity and Serine β-lactamases Inhibition

Annor-Gyamfi, Joel K 01 August 2016 (has links)
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) derivatives possess cancerostatic and anti-infective properties thus making them candidates of possible antibacterial agents. ²-lactam antibiotics are vital weapons for the treatment of bacterial infections, but their existence and effectiveness has been faced with resistance from ²-lactamases. Therefore, the need for new effective antimicrobial drugs is very crucial. In this work, we synthesized in high yields, PBD analogs 1−3, 5 and 7−9 in three to four synthetic steps from commercially available L-proline and isatoic anhydride. MTT Assay was employed to test the in vitro cytotoxicity of PBD analogs 1, 2, 5 and 7 on cancer cell lines including MCF-7, SKBR-3, SKMEL-2, CaCo 2 and Mia Paca. These compounds decreased the cell viability of MCF-7 by roughly 20% however, 1 and 5 had no effect on the SKMEL-2 cell lines. The inhibitory efficacy of these PBDs were also tested against TEM-1 and P99 Serine class A and C ²-lactamases.
155

The role of interfacial and 'entropic' enzymes in transitory starch degradation : a mathematical modeling approach

Kartal, Önder January 2011 (has links)
Plants and some unicellular algae store carbon in the form of transitory starch on a diurnal basis. The turnover of this glucose polymer is tightly regulated and timely synthesis as well as mobilization is essential to provide energy for heterotrophic growth. Especially for starch degradation, novel enzymes and mechanisms have been proposed recently. However, the catalytic properties of these enzymes and their coordination with metabolic regulation are still to be discovered. This thesis develops theoretical methods in order to interpret and analyze enzymes and their role in starch degradation. In the first part, a novel description of interfacial enzyme catalysis is proposed. Since the initial steps of starch degradation involve reactions at the starch-stroma interface it is necessary to have a framework which allows the derivation of interfacial enzyme rate laws. A cornerstone of the method is the introduction of the available area function - a concept from surface physics - to describe the adsorption step in the catalytic cycle. The method is applied to derive rate laws for two hydrolases, the Beta-amylase (BAM3) and the Isoamylase (DBE/ISA3), as well as to the Glucan, water dikinase (GWD) and a Phosphoglucan phosphatase (DSP/SEX4). The second part uses the interfacial rate laws to formulate a kinetic model of starch degradation. It aims at reproducing the stimulatory effect of reversible phosphorylation by GWD and DSP on the breakdown of the granule. The model can describe the dynamics of interfacial properties during degradation and suggests that interfacial amylopectin side-chains undergo spontaneous helix-coil transitions. Reversible phosphorylation has a synergistic effect on glucan release especially in the early phase dropping off during degradation. Based on the model, the hypothesis is formulated that interfacial phosphorylation is important for the rapid switch from starch synthesis to starch degradation. The third part takes a broader perspective on carbohydrate-active enzymes (CAZymes) but is motivated by the organization of the downstream pathway of starch breakdown. This comprises Alpha-1,4-glucanotransferases (DPE1 and DPE2) and Alpha-glucan-phosphorylases (Pho or PHS) both in the stroma and in the cytosol. CAZymes accept many different substrates and catalyze numerous reactions and therefore cannot be characterized in classical enzymological terms. A concise characterization is provided by conceptually linking statistical thermodynamics and polymer biochemistry. Each reactant is interpreted as an energy level, transitions between which are constrained by the enzymatic mechanisms. Combinations of in vitro assays of polymer-active CAZymes essential for carbon metabolism in plants confirmed the dominance of entropic gradients. The principle of entropy maximization provides a generalization of the equilibrium constant. Stochastic simulations confirm the results and suggest that randomization of metabolites in the cytosolic pool of soluble heteroglycans (SHG) may contribute to a robust integration of fluctuating carbon fluxes coming from chloroplasts. / Stärke hat eine herausragende Bedeutung für die menschliche Ernährung. Sie ist ein komplexes, wasserunlösliches Glucosepolymer und dient - als eine der wichtigsten Speicherformen von Kohlenhydraten in Pflanzen - der Aufrechterhaltung des Energiestoffwechsels. Unterschiedliche Organe enthalten Stärke. In Knollen und Samen wird die sogenannte Speicherstärke über lange Zeiträume auf- und abgebaut. Die im Allgemeinen weniger bekannte transitorische Stärke in Blättern und einigen einzelligen Algen wird in einem täglichen Rhythmus umgesetzt: Sie wird während der Photosynthese aufgebaut und in der Nacht abgebaut. Experimentelle Studien haben nachgewiesen, dass die Fähigkeit der Pflanze, den Abbau transitorischer Stärke zu regeln, essentiell ist, um während der Nacht das Wachstum der Pflanze zu gewährleisten. Da die Geschwindigkeit von biochemischen Reaktionen über Enzyme reguliert wird, ist die Aufklärung ihrer Funktion im Stoffwechsel eine notwendige Voraussetzung, um den komplexen Prozess des Wachstums zu erklären. Die vorliegende Arbeit stellt einen Versuch dar, die Funktion von Enzymen beim Stärkeabbau anhand von mathematischen Modellen und Computersimulationen besser zu verstehen. Dieser Ansatz erlaubt es, Eigenschaften des Systems durch Abstraktion anhand eines idealisierten Abbildes herzuleiten. Die mathematisch notwendigen Folgerungen dienen der Aufstellung von Hypothesen, die wiederum mit experimentellen Resultaten konfrontiert werden können. Stoffwechselsysteme sind komplexe Untersuchungsobjekte, bei denen eine rein qualitative Argumentation schnell an Grenzen gerät, wo mathematische Methoden die Möglichkeit von Aussagen noch zulassen. Der erste Teil der Arbeit entwickelt einen theoretischen Rahmen, um Gleichungen für die Geschwindigkeit oberflächenaktiver Enzyme herzuleiten. Dies ist notwendig, da die ersten Reaktionen, die dem Stärkeabbau zugeordnet werden, an ihrer Oberfläche stattfinden. Die Methode wird auf vier essentielle Enzyme angewandt: zwei abbauende Enzyme (Beta-Amylase und Isoamylase) und zwei den Abbau unterstützende Enzyme (Alpha-Glucan,Wasser-Dikinase und Phosphoglucan Phosphatase). Der zweite Teil entwickelt ein kinetisches Modell des Stärkeabbaus unter Verwendung der hergeleiteten Ratengleichungen. Das Modell bildet die Dynamik des Systems realistisch ab und legt nahe, dass ein spontaner Phasenübergang an der Oberfläche von geordneten zu weniger geordneten Zuständen stattfindet. Ferner wird die Hypothese aufgestellt, dass die reversible Modifikation der Oberfläche durch Enzyme besonders in der Anfangsphase des Abbaus einen synergetischen Effekt hat, d.h. den Abbau enorm beschleunigt. Dies könnte beim schnellen Umschalten von Stärkeaufbau zu Stärkeabbau regulatorisch relevant sein. Im letzten Teil werden kohlenhydrataktive Enzyme betrachtet, die in der löslichen Phase die Produkte des Stärkeabbaus weiterverarbeiten. Da diese sogenannten Transferasen auch in vielen anderen Organismen und Stoffwechselwegen vorkommen, wird ein allgemeiner Standpunkt eingenommen. Anhand von Methoden aus der statistischen Physik wird theoretisch wie experimentell nachgewiesen, dass diese Enzyme spontan die Entropie innerhalb des Stoffwechselsystems erhöhen. Diese Neigung, "Unordnung" zu schaffen, wird vom Organismus aber paradoxerweise ausgenutzt, um die Weiterverarbeitung von Kohlenhydraten im Stärkestoffwechsel zu stabilisieren. Dieser Mechanismus eröffnet einen neuen Blick auf energie- und entropiegetriebene Prozesse in Zellen.
156

Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection

January 2012 (has links)
The fitness function developed in this thesis directly links the physicochemical properties of an enzyme to evolutionary fates in a quantitative and predictive manner through a comparative study of empirical and simulated data. The success or failure of organisms during evolution is dictated by changes in molecular structure that give rise to changes in fitness revealed by evolutionary dynamics within a population. While the conceptual link between genotype, phenotype and fitness is clear, the ability to relate these in a quantitative manner remains difficult. I show here that predicting success during adaptation can depend critically upon enzyme kinetic and folding models. We used a 'weak link' method to favor mutations to an essential, but maladapted adenylate kinase gene within a microbial population that resulted in the identification of five mutants that arose nearly simultaneously and competed for success. The unique catalytic role of adenylate kinase in vivo is to maintain adenylate homeostasis by catalyzing the reaction: ATP + AMP [imaginary] ADP. The stabilizing substitutions retained this essential function and were shown to be necessary for viability at higher temperatures. Physicochemical characterization of these mutants demonstrated that, although steady-state enzyme activity is important, success within the population is critically dependent on resistance to denaturation and aggregation thus emphasizing the importance of proper folding in adaptation. In vitro activity is a product of critical catalytic and folding pathways, and hence is a valuable proxy for fitness. A fitness function relating in vitro measurements of enzyme activity and reversible and irreversible unfolding to growth rate must impose an activity threshold above which there is no added fitness benefit in order to reproduce in vivo evolutionary fates in an in silico population. The fitness function thereby links organismal adaptation to the properties of a single gene. Understanding the physical basis for adaptation of an organism is the first step in the development of approaches that can accurately model, and someday predict, the manner in which organisms would respond to new antibiotics and improve upon the current clinical regimens.
157

Modeling of transient protein-protein interactions: a structural study of the thioredoxin system

Obiero, Josiah Maina 25 February 2011
ABSTRACT Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function. Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions. In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.
158

Investigation of Inositol dehydrogenase-related enzymes

2012 January 1900 (has links)
Inositol dehydrogenase (IDH) catalyzes the oxidation of myo-inositol to scyllo-inosose using NAD+ as the coenzyme. IDH-related genes (Lp_iolG1 to Lp_iolG4) from Lactobacillus plantarum WCSF1 and (Lc_iolG1 and Lc_iolG2) from Lactobacillus casei BL23 were cloned into the vector pQE-80L, expressed in E. coli host cells and the proteins were purified to homogeneity. IDH activity of the purified enzymes was explored with myo-inositol and other structurally related compounds. It was found that IDH-related enzymes from L. plantarum WCSF1 did not exhibit any activity with tested substrates but, LcIDH1 and LcIDH2 from L. casei BL23 showed activity with myo-inositol and other related compounds. pH-rate profile studies have demonstrated the optimum pH for the reactions catalyzed by the active enzymes. Steady-state kinetics of the active enzymes was performed as with IDH from Bacillus subtilis (BsIDH), revealing that LcIDH1 is a myo-inositol dehydrogenase and LcIDH2 is a scyllo-inositol dehydrogenase. Both LcIDH1 and LcIDH2 are observed to be NAD+-dependent. Kinetic isotopic effect experiments for LcIDH1 have demonstrated that the chemical step in the reaction is partly rate-limiting. Substrate spectrum of LcIDH1 and LcIDH2 was explored and compared to BsIDH. Finally, a multiple sequence alignment of IDH-related enzymes was performed and the proposed consensus sequence motifs were considered to understand the activity differences between these enzymes.
159

Modeling of transient protein-protein interactions: a structural study of the thioredoxin system

Obiero, Josiah Maina 25 February 2011 (has links)
ABSTRACT Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function. Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions. In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.
160

The influence of ionic strength on the kinetics of selected enzymes.

Chuntharpursat, Eulashini. January 2005 (has links)
pH studies are used to gain insight into chemical mechanisms of enzyme catalysed reactions. However, perhaps the most important practical point that is often overlooked in pH studies is control of the ionic strength of reaction mixtures at the various pH values. For example, cathepsins Band L were suspected to be involved in cancer invasion but pH vs activity profiles indicated that they were not active at the extracellular pH (pH 7.2). When these profiles were re-evaluated in buffers of constant ionic strength, as opposed to buffers of constant molarity, it was shown that the enzymes were indeed active at pH 7.2. Other enzymes have also been reported to be sensitive to ionic strength. These include neutrophil elastase, class sigma glutathione S-transferase and penicillin G-acylase amongst others. The effects of increasing ionic strength on the activity of six enzymes were investigated. a-Glucosidase (from bakers ' yeast), elastase (human leukocyte) and trypsin (bovine pancreatic), cathepsin L (sheep liver), cathepsin B (rabbit liver), fruit bromelain (pineapple fruit) were subjected to different ionic strength buffers and their activities and Km and Vmax were determined as a function of ionic strength. The influence of ionic strength on Ki values has not been previously reported and was also studied, using the interaction between chicken egg-white cystatin C and cathepsin L as a model. a-Glucosidase was found to have an ionic strength optimum and elastase showed increasing activity with an increase in ionic strength. Trypsin activity decreased with increasing ionic strength with a substrate containing a positively charged side chain in the P1 position, and an increase in activity with a substrate containing a hydrophobic group at the P1 position. Cathepsin B activity increased when acting on the substrate Z-Phe-ArgNHMec and decreased when acting on Z-Arg-Arg-NHMec, with increasing ionic strength. Bromelain showed an increase in activity with increasing ionic strength. Cathepsin L activity decreased at increasing ionic strength and the Ki values for the cathepsin L-cystatin C interaction increased with increasing ionic strength. The results obtained can be attributed to the nature of the specificity pockets involved in binding the substrate, effects on the catalytic mechanism of the enzyme or structural changes due to increasing ionic strength. These results show that the ionic strength is a significant variable and should be kept constant or at in vivo levels when assaying enzymes. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.

Page generated in 0.075 seconds