• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation into the molecular mechanisms of import of mitochondrial small Tim proteins

Durigon, Romina January 2012 (has links)
Protein import is essential for the biogenesis of mitochondria, as the majority (99%) of mitochondrial proteins are synthesised in the cytosol and thus, have to be imported into mitochondria for their function. The biogenesis of many cysteine-containing proteins of the mitochondrial intermembrane space (IMS), such as members of the small TIM and Cox17 families, is regulated by their thiol-disulphide redox state. Only the Cys-reduced precursors can be imported into mitochondria, whereas oxidised forms cannot. Their import and oxidative folding in the IMS is driven by the IMS disulphide relay system, known as mitochondrial import and assembly (MIA) pathway, whose central components are the oxidoreductase Mia40 and the sulphydryl oxidase Erv1. Currently, little is known about how the MIA precursors are maintained in the cytosol in an import-competent form, and whether they interact with the translocase of the outer membrane (TOM complex) to enter the IMS. In addition, the MIA-mediated protein folding events occurring in the IMS that lead to the generation of fully oxidised substrates are still under investigation. Using Tim9 and yeast as models, studies presented in this thesis showed that Tim9 binding to the mitochondrial outer membrane (OM) does not depend on the receptors of the TOM complex, and occurs without regard to the redox state of the precursor proteins. In addition, it is shown that the oxidised and reduced precursors share the same binding site on the OM, and that this binding site is not important for the translocation process across the OM (Chapter 3). Studies in this thesis investigated the role of the cytosolic thioredoxin and glutaredoxin systems in the biogenesis of mitochondria. Firstly, in vivo studies provided the evidence that the cytosolic thioredoxin system but not the glutaredoxin system is required for growth of yeast cells under respiratory conditions. Secondly, in vivo studies provided the first proof that the Trx system is required for the biogenesis of small Tim proteins. In vitro studies confirmed that the Trx1 system facilitates import of small Tim proteins into isolated mitochondria by maintaining the precursors in a reduced and therefore competent form (Chapter 5). Finally, in vitro studies showed that Mia40 is able to promote the full oxidation of Tim9. Efficient release of Tim9 from Mia40 required the presence of all cysteine residues of Tim9, as effective oxidation and concomitant release from Mia40 failed upon mutation of single cysteine residues. Finally, the study showed that reduced glutathione resolved rapidly the Mia40-Tim9 mixed-disulphide complexes, probably accelerating and/or promoting the Tim9 oxidative (Chapter 4).
2

Caracterização funcional e estrutural do sistema Tiorredoxina mitocondrial de Saccharomyces cerevisiae / Functional and structural characterization of the mitochondrial thioredoxin system from Saccharomyces cerevisiae

Nakamatsu, Eduardo Hiroshi 14 September 2012 (has links)
NADPH, tiorredoxina e tioredoxina redutase compõem o sistema tiorredoxina, estão envolvidos na redução de ligações específicas de dissulfetos que desempenham um grande número de funções biológicas, tais como: síntese de DNA, defesa contra o estresse oxidativo, apoptose e sinalização redox. Tem sido demonstrado que as interações tioredoxina redutase-tiorredoxina são espécies específicas, sendo assim, investigamos aqui a especificidade dos substratos da tioredoxina redutase 2 mitocondrial (ScTrxR2) de Saccharomyces cerevisiae frente a outras tioredoxinas. ScTrxR2 especificamente reduziu as tiorredoxinas de levedura (tiorredoxina 1 = ScTrx1, tiorredoxina 2 = ScTrx2 e tiorredoxina = ScTrx3), mas não conseguiu reduzir a tiorredoxina de Homo sapiens e a de Escherichia coli. Além disso, ScTrxR2 exibiu eficiência catalítica semelhante para ScTrx3, que está localizado na mitocôndria e ScTrx1 e ScTrx2 que estão localizadas no citosol. Para compreender as características deste fenômeno, resolvemos a estrutura cristalográfica da ScTrxR2 a 1,9 Å de resolução por meio de substituição molecular utilizando as coordenadas de ScTrxR1 (PDB Id = 3ITJ) como modelo (Oliveira et al., 2010). A ScTrxR2 é uma proteína de dois domínios (domínio de ligação do NADPH e domínio de ligação do FAD). As tiorredoxinas redutases de baixo peso molecular podem adotar duas conformações: flavina oxidada (FO) e flavina reduzida (FR), estando esta última envolvida na interação física com as tiorredoxinas. A estrutura cristalográfica da ScTrxR2 obtida por nós está na conformação FO. Posteriormente, modelamos a conformação FR (Flavina reduzida) da ScTrxR2, a partir da estrutura do cristal na conformação FO, e utilizando a estrutura cristalográfica da tiorredoxina redutase de E. coli complexada com a tiorredoxina (PDB 1F6M). Pela análises dessas estruturas, levantamos hipóteses de que alguns resíduos de aminoácidos podem estar envolvidos nas interações espécie-específicas entre tiorredoxina redutase e tiorredoxina. Com isso, geramos mutantes sítio dirigidos das Trx de levedura e da ScTrxR2 e através de ensaios enzimáticos e bioquímicos com estas proteínas mutantes estamos testando as hipóteses levantadas sobre possíveis amino ácidos envolvidos em interações entre tiorredoxina e tiorredoxina redutase / NADPH, thioredoxin and thioredoxin reductase, comprising the thioredoxin system, are involved in the reduction of specific disulfides linkages that play a large number of biological roles, such as: DNA synthesis, defense against oxidative stress, apoptosis and redox signaling. It has been shown that thioredoxin reductase-thioredoxin interactions are species-specific, therefore we have investigated here the substrate specificity of mitochondrial Thioredoxin reductase 2 (ScTrxR2) from Saccharomyces cerevisiae towards other thioredoxins. ScTrxR2 specifically reduced yeast thioredoxins (thioredoxin 1 = ScTrx1, thioredoxin 2 = ScTrx2 and thioredoxin = ScTrx3), but failed to reduce thioredoxin from Homo sapiens and from Escherichia coli. Furthermore, ScTrxR2 displayed similar catalytic efficiency towards ScTrx3, which is located in the mitochondria and ScTrx1 and ScTrx2 that are located in the cytosol. To understand the features of this phenomenon, we have solved the crystallographic structure of ScTrxR2 at 1,9Å resolution through molecular replacement using ScTrxR1 as search model (Oliveira et al., 2010)1. ScTrxR2 is a two-domain protein (NADPH and FAD binding domains). Low molecular weight thioredoxin reductases can adopt two conformations: flavin oxidized (FO) or flavin reduced (FR), the late one physically interacts with thioredoxins. Our ScTrxR2 crystal structure is in the FO conformation. Therefore, we have modeled the ScTrxR2 FR (Flavin reduced) conformation from our FO crystal structure and using the E. coli thioredoxin reductase crystallographic structure complexed with thioredoxin (PDB code 1F6M). Then, we have raised hypothesis that some amino acid residues that may be involved in the thioredoxin reductase-thioredoxin interactions. Next, site-directed mutants of yeast Trxs and ScTrx2 were generated. Through enzymatic and biochemical assays with these mutant proteins we are testing the hypothesis generated by structural analysis
3

Caracterização funcional e estrutural do sistema Tiorredoxina mitocondrial de Saccharomyces cerevisiae / Functional and structural characterization of the mitochondrial thioredoxin system from Saccharomyces cerevisiae

Eduardo Hiroshi Nakamatsu 14 September 2012 (has links)
NADPH, tiorredoxina e tioredoxina redutase compõem o sistema tiorredoxina, estão envolvidos na redução de ligações específicas de dissulfetos que desempenham um grande número de funções biológicas, tais como: síntese de DNA, defesa contra o estresse oxidativo, apoptose e sinalização redox. Tem sido demonstrado que as interações tioredoxina redutase-tiorredoxina são espécies específicas, sendo assim, investigamos aqui a especificidade dos substratos da tioredoxina redutase 2 mitocondrial (ScTrxR2) de Saccharomyces cerevisiae frente a outras tioredoxinas. ScTrxR2 especificamente reduziu as tiorredoxinas de levedura (tiorredoxina 1 = ScTrx1, tiorredoxina 2 = ScTrx2 e tiorredoxina = ScTrx3), mas não conseguiu reduzir a tiorredoxina de Homo sapiens e a de Escherichia coli. Além disso, ScTrxR2 exibiu eficiência catalítica semelhante para ScTrx3, que está localizado na mitocôndria e ScTrx1 e ScTrx2 que estão localizadas no citosol. Para compreender as características deste fenômeno, resolvemos a estrutura cristalográfica da ScTrxR2 a 1,9 Å de resolução por meio de substituição molecular utilizando as coordenadas de ScTrxR1 (PDB Id = 3ITJ) como modelo (Oliveira et al., 2010). A ScTrxR2 é uma proteína de dois domínios (domínio de ligação do NADPH e domínio de ligação do FAD). As tiorredoxinas redutases de baixo peso molecular podem adotar duas conformações: flavina oxidada (FO) e flavina reduzida (FR), estando esta última envolvida na interação física com as tiorredoxinas. A estrutura cristalográfica da ScTrxR2 obtida por nós está na conformação FO. Posteriormente, modelamos a conformação FR (Flavina reduzida) da ScTrxR2, a partir da estrutura do cristal na conformação FO, e utilizando a estrutura cristalográfica da tiorredoxina redutase de E. coli complexada com a tiorredoxina (PDB 1F6M). Pela análises dessas estruturas, levantamos hipóteses de que alguns resíduos de aminoácidos podem estar envolvidos nas interações espécie-específicas entre tiorredoxina redutase e tiorredoxina. Com isso, geramos mutantes sítio dirigidos das Trx de levedura e da ScTrxR2 e através de ensaios enzimáticos e bioquímicos com estas proteínas mutantes estamos testando as hipóteses levantadas sobre possíveis amino ácidos envolvidos em interações entre tiorredoxina e tiorredoxina redutase / NADPH, thioredoxin and thioredoxin reductase, comprising the thioredoxin system, are involved in the reduction of specific disulfides linkages that play a large number of biological roles, such as: DNA synthesis, defense against oxidative stress, apoptosis and redox signaling. It has been shown that thioredoxin reductase-thioredoxin interactions are species-specific, therefore we have investigated here the substrate specificity of mitochondrial Thioredoxin reductase 2 (ScTrxR2) from Saccharomyces cerevisiae towards other thioredoxins. ScTrxR2 specifically reduced yeast thioredoxins (thioredoxin 1 = ScTrx1, thioredoxin 2 = ScTrx2 and thioredoxin = ScTrx3), but failed to reduce thioredoxin from Homo sapiens and from Escherichia coli. Furthermore, ScTrxR2 displayed similar catalytic efficiency towards ScTrx3, which is located in the mitochondria and ScTrx1 and ScTrx2 that are located in the cytosol. To understand the features of this phenomenon, we have solved the crystallographic structure of ScTrxR2 at 1,9Å resolution through molecular replacement using ScTrxR1 as search model (Oliveira et al., 2010)1. ScTrxR2 is a two-domain protein (NADPH and FAD binding domains). Low molecular weight thioredoxin reductases can adopt two conformations: flavin oxidized (FO) or flavin reduced (FR), the late one physically interacts with thioredoxins. Our ScTrxR2 crystal structure is in the FO conformation. Therefore, we have modeled the ScTrxR2 FR (Flavin reduced) conformation from our FO crystal structure and using the E. coli thioredoxin reductase crystallographic structure complexed with thioredoxin (PDB code 1F6M). Then, we have raised hypothesis that some amino acid residues that may be involved in the thioredoxin reductase-thioredoxin interactions. Next, site-directed mutants of yeast Trxs and ScTrx2 were generated. Through enzymatic and biochemical assays with these mutant proteins we are testing the hypothesis generated by structural analysis
4

Combined Activity of Small-Molecule Inducers of Organelle Stress with TH1 Cytokines for Induction of Apoptosis in Breast Cancer Cells

Anwar, Ariel Lynn 29 November 2022 (has links)
No description available.
5

Modeling of transient protein-protein interactions: a structural study of the thioredoxin system

Obiero, Josiah Maina 25 February 2011
ABSTRACT Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function. Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions. In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.
6

Modeling of transient protein-protein interactions: a structural study of the thioredoxin system

Obiero, Josiah Maina 25 February 2011 (has links)
ABSTRACT Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function. Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions. In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.

Page generated in 0.1967 seconds