• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Link Adaptation for Mitigating Earth-to-Space Propagation Effects on the NASA SCaN Testbed

Kilcoyne, Deirdre Kathleen 15 June 2016 (has links)
In Earth-to-Space communications, well-known propagation effects such as path loss and atmospheric loss can lead to fluctuations in the strength of the communications link between a satellite and its ground station. Additionally, a less-often considered effect of shadowing due to the geometry of the satellite and its solar panels can also lead to link degradation. As a result of these anticipated channel impairments, NASA's communication links have been traditionally designed to handle the worst-case impact of these effects through high link margins and static, lower rate, modulation formats. This thesis first characterizes the propagation environment experienced by a software-defined radio on the NASA SCaN Testbed through a full link-budget analysis. Then, the following chapters propose, design, and model a link adaptation algorithm to provide an improved trade-off between data rate and link margin through varying the modulation format as the received signal-to-noise ratio fluctuates. / Master of Science
2

[en] TRANSMISSION AND RECEPTION OF DATA IN EHF / [pt] TRANSMISSÃO E RECEPÇÃO DE DADOS EM EHF

ANDY ALVAREZ ARELLANO 30 November 2017 (has links)
[pt] Nos últimos anos, as bandas de frequências nas comunicações sem fio estão começando a saturar devido ao incremento do tráfego e o aumento dos usuários, é devido a isso que, é necessário estudar as bandas de frequências que não estão sendo utilizadas nas áreas das comunicações como a banda milimétrica e sub-milimétrica. A transmissão de dados na banda EHF o banda milimétrica constitui uma possível solução para conseguir transmitir maiores quantidades de informação a altas velocidades de transmissão aliviando as bandas de frequências atuais. Neste trabalho se estuda a transmissão de dados em frequências de 100, 200, 300 e 400 GHz, empregando a modulação Quadrature Phase-Shift Keying (QPSK) mediante uma arquitetura baseada no batimento de dois lasers, cujas frequências são combinadas em um Beam Splitter, para que a corrente resultante da soma dos campos elétricos dos dois lasers seja convertida em um sinal de alta frequência por meio de uma antena fotocondutora. O batimento dos dois lasers, com diferentes comprimentos de onda e com a mesma potência, ao interagir com uma antena fotocondutora dá como resultado uma frequência na ordem de Gigahertz. No experimento utilizaram-se dois tipos de diodos receptores, um de banda larga (menor que 4 GHz) e outro de banda estreita (menor que 1 MHz). As duas antenas foram testadas em diferentes distâncias e com diferentes frequências de portadora para verificar qual delas tinha o melhor desempenho na banda EHF para poder realizar a transmissão de dados. / [en] In recent years, the frequency bands in wireless communications are beginning to saturate due to the increase of traffic and the increase of users, and it for that reason that is necessary to study the frequency bands that are not begin used in the communication areas like millimeter and sub-millimeters bands. Data transmission in the EHF band is a possible solution to be able to transmit large amounts of information at high transmission speeds, alleviating current frequency bands. In this work, the transmission of data in frequencies of 100, 200, 300 and 400 Gigahertz is studied, using Quadrature phase-shift keying (QPSK) modulation with an architecture based on the beat of two lasers, whos frequencies are combined by means of Beam Splitter, so that result of the electric fields of two lasers is converted into a high frequency signal with the aid of a photoconductor antenna. The.beating of the two lasers, with different wavelengths and with the same power, when interacting with a photoconductor antenna results in a frequency in the order of Gigahertz. In the experiment, two types of receiver diodes were used, one Broadband (less than 4 GHz) and the other of narrowband (less than 1 MHz). The two antennas were tested at different distances and with different carrier frequencies to verify which one had the best performance in the EHF band in order to perform the data transmission.
3

Advanced Transceiver Algorithms for OFDM(A) Systems

Mahmoud, Hisham A. 25 March 2009 (has links)
With the increasing advancements in the digital technology, future wireless systems are promising to support higher data rates, higher mobile speeds, and wider coverage areas, among other features. While further technological developments allow systems to support higher computational complexity, lower power consumption, and employ larger memory units, other resources remain limited. One such resource, which is of great importance to wireless systems, is the available spectrum for radio communications. To be able to support high data rate wireless applications, there is a need for larger bandwidths in the spectrum. Since the spectrum cannot be expanded, studies have been concerned with fully utilizing the available spectrum. One approach to achieve this goal is to reuse the available spectrum through space, time, frequency, and code multiplexing techniques. Another approach is to optimize the transceiver design as to achieve the highest throughput over the used spectrum. From the physical layer perspective, there is a need for a highly flexible and efficient modulation technique to carry the communication signal. A multicarrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is one example of such a technique. OFDM has been used in a number of current wireless standards such as wireless fidelity (WiFi) and worldwide interoperability for microwave access (WiMAX) standards by the Institute of Electrical and Electronics Engineers (IEEE), and has been proposed for future 4G technologies such as the long term evolution (LTE) and LTE-advanced standards by the 3rd Generation Partnership Project (3GPP), and the wireless world initiative new radio (WINNER) standard by the Information society technologies (IST). This is due to OFDM’s high spectral efficiency, resistance to narrow band interference, support for high data rates, adaptivity, and scalability. In this dissertation, OFDM and multiuser OFDM , also known as orthogonal frequency division multiple access (OFDMA), techniques are investigated as a candidate for advanced wireless systems. Features and requirements of future applications are discussed in detail, and OFDM’s ability to satisfy these requirements is investigated. We identify a number of challenges that when addressed can improve the performance and throughput of OFDM-based systems. The challenges are investigated over three stages. In the first stage, minimizing, or avoiding, the interference between multiple OFDMA users as well as adjacent systems is addressed. An efficient algorithm for OFDMA uplink synchronization that maintains the orthogonality between multiple users is proposed. For adjacent channel interference, a new spectrum shaping method is proposed that can reduce the out-of-band radiation of OFDM signals. Both methods increase the utilization of available spectrum and reduce interference between different users. In the second stage, the goal is to maximize the system throughput for a given available bandwidth. The OFDM system performance is considered under practical channel conditions, and the corresponding bit error rate (BER) expressions are derived. Based on these results, the optimum pilot insertion rate is investigated. In addition, a new pilot pattern that improves the system ability to estimate and equalize various radio frequency (RF) impairments is proposed. In the last stage, acquiring reliable measurements regarding the received signal is addressed. Error vector magnitude (EVM) is a common performance metric that is being used in many of today’s standards and measurement devices. Inferring the signal-to-noise ratio (SNR) from EVM measurements has been investigated for either high SNR values or data-aided systems. We show that using current methods does not yield reliable estimates of the SNR under other conditions. Thus, we consider the relation between EVM and SNR for nondata-aided systems. We provide expressions that allow for accurate SNR estimation under various practical channel conditions.
4

Distortion-based crest factor reduction algorithms in multi-carrier transmission systems

Zhao, Chunming 12 November 2007 (has links)
Distortion-based crest factor reduction (CFR) algorithms were studied in orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) OFDM systems to reduce the nonlinear distortion and improve the power efficiency of the transmitter front-end. First, definitions of peak-to-average-power ratio (PAR) were clarified based on the power efficiency improvement consideration in the MIMO-OFDM systems. Next, error vector magnitude (EVM) was used as the in-band performance-evaluating metric. Statistical analysis of EVM was performed to provide concrete thresholds for the amount of allowable distortions from each source to meet EVM requirements in the standard. Furthermore, an effective CFR technique, constrained clipping, was proposed to drastically reduce the PAR while satisfying any given in-band EVM and out-of-band spectral mask constraints. Constrained clipping has low computational complexity and can be easily extended to the multiple-user OFDM environment. Finally, signal-to-noise-and-distortion ratio (SNDR) analysis for transceiver nonlinearities in the additive white Gaussian noise channel was investigated. An analytical solution was presented for maximizing the transceiver SNDR for any given set of nonlinear transmitter polynomial coefficients. Additionally, mutually inverse pair of transceiver nonlinearities was shown to be SNDR-optimal only in the noise-free case.
5

Improved frequency domain measurement techniques for characterizing power amplifier and multipath environments

McKinley, Michael Dean 19 August 2008 (has links)
This work focuses on fixing measurement inaccuracies to which models and figures of merit are susceptible in two wireless communication environments: power amplifier and multipath. To emulate or rate the performance of these environments, models and figures of merit, respectively, are often used. The usefulness of a model depends on how accurately and efficiently it emulates its real-world counterpart. The usefulness of a figure of merit depends on how accurately it represents system behavior. Most discussions on the challenges and trade-offs faced in modeling nearly always focus on the complexity of the device or channel of interest and the resultant difficulty in describing it. Similarly, figures of merit are meant only to summarize the performance of the device or channel. At some point, either in generation or verification of a model or figure of merit, there is a dependence on measured data. Though the complexity and performance of the device or channel are challenges by themselves, there are other significant sources of distortion that must be minimized to avoid errors in the measured data. For this work, the unique distortion of power amplifier and multipath environments is considered, and then errors in measurement which would obscure these distortions are eliminated. Specifically, three measurement issues are addressed: 1) identifying measurement setup artifacts, 2) achieving consistent measurement results and 3) reducing variations in the environment. This work contributes to increasing the accuracy of microwave measurements used in the modeling of nonlinear high-power amplifiers and used in figures of merit for power amplifiers and multipath channels.
6

Sledování spektra a optimalizace systémů s více nosnými pro kognitivní rádio / Spectrum sensing and multicarrier systems optimization for cognitive radio

Povalač, Karel January 2012 (has links)
The doctoral thesis deals with spectrum sensing and subsequent use of the frequency spectrum by multicarrier communication system, which parameters are set on the basis of the optimization technique. Adaptation settings can be made with respect to several requirements as well as state and occupancy of individual communication channels. The system, which is characterized above is often referred as cognitive radio. Equipments operating on cognitive radio principles will be widely used in the near future, because of frequency spectrum limitation. One of the main contributions of the work is the novel usage of the Kolmogorov – Smirnov statistical test as an alternative detection of primary user signal presence. The new fitness function for Particle Swarm Optimization (PSO) has been introduced and the Error Vector Magnitude (EVM) parameter has been used in the adaptive greedy algorithm and PSO optimization. The dissertation thesis also incorporates information about the reliability of the frequency spectrum sensing in the modified greedy algorithm. The proposed methods are verified by the simulations and the frequency domain energy detection is implemented on the development board with FPGA.
7

Koexistence mobilních komunikačních systémů GSM-EDGE a UMTS / GSM-EDGE and UMTS Systems Coexistence

Gleissner, Filip January 2009 (has links)
The dissertation thesis deals with the investigation of the coexistence of GSM–EDGE and UMTS systems with focus on the physical layer of the systems. The aim is to provide a set of recommendations for practical cooperation while the systems operate in both the separated and the common radio bands. A detailed description of signal processing of both the systems on the physical layer is presented. On the basis of this description, models of both systems were created and implemented in the MATLAB environment. The simulations are focused on the physical layer quality parameters, especially the bit error ratio evaluation for various ratios of useful signal power to noise power during the transmission over the radio channel. Simulation is also used to examine the quality of received useful signal while it is interfered by signals from the same and adjacent channels. The purpose is to determine the isolation between these adjacent channels, when the bit error ratio of the useful signal does not exceed a certain reference value. The simulation results are subsequently subjected to comparison with the results of the experimental measurements in laboratory conditions. Before the measurements are carried out, a study of possible interference types is performed. Consequently, the crucial parameters of the measuring equipment used are verified. From the results of simulations and measurements, the proposal of a minimum and recommended carrier separation between both the systems is presented in order to efficiently utilize the assigned frequency spectrum. Furthermore, for the cooperation in both the separated and the common radio bands, the necessary precautions are given for reaching the required isolation and thereby inter-system interference minimization.

Page generated in 0.0923 seconds