• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 10
  • 3
  • Tagged with
  • 60
  • 37
  • 36
  • 30
  • 22
  • 21
  • 17
  • 14
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

THE ROLE OF HOST GALAXY KINEMATICS ON NUCLEAR ACTIVITY

Dumas, Gaelle 18 September 2008 (has links) (PDF)
Ce travail de thèse s'articule autour de deux questions scientifiques importantes à propos des galaxies actives : quels sont les mécanismes transportant le gaz et quel est le role de la galaxie sur l'activité nucléaire ? Nous avons donc mené une étude observationnelle approfondie et statistique du gaz et des étoiles, pour comparer la morphologie et cinématique des galaxies actives et non-actives sur differentes échelles spatiales, en utilisant des données spectroscopiques optique et radio. Nos résultats montrent que dans les régions centrales des galaxies actives la cinématique des étoiles est régulière alors que le gaz est perturbé. Ces perturbations suggèrent un lien entre la dynamique au centre des galaxies et les mécanismes d'alimentation du noyau actif. Enfifin les données radio et optique sont combinées pour analyser la cinématique galactique dans son ensemble. Cette étude nous<br>permet de sonder à differentes échelles spatiales les perturbations liées à l'alimentation du noyau actif.
42

Transition de phase et frustration en physique nucléaire et astrophysique

Hasnaoui, Karim 17 October 2008 (has links) (PDF)
Cette thèse se propose d'étudier la thermodynamique de la matière nucléaire qui constitue l'écorce des proto-étoiles et étoiles à neutrons. Une connaissance détaillée des propriétés thermodynamiques de la matière d'étoile est nécessaire afin d'améliorer la compréhension des phénomènes physiques impliqués dans le refroidissement des proto-étoiles, et dans la formation de supernovae de type II. L'un des objectifs fondamentaux est d'extraire le diagramme des phase de la matière d'étoile afin de déterminer si celui-ci présente des instabilités et/ou des points critiques. Le travail présenté ici se divise en deux parties, une première portant sur des approches classiques, et une seconde sur une approche quantique. Les approches classiques sont basées sur le modèle d'Ising et le groupe de renormalisation. Elles vont nous permettre d'obtenir des informations qualitatives sur la phénoménologie des transitions de phase de la matière d'étoile, et de discuter l'influence de la frustration Coulombienne sur le diagramme des phases. L'approche quantique est basée sur un modèle de dynamique moléculaire fermionique que nous avons dérivé à partir du formalisme de la fonctionnelle de la densité, et implémenté numériquement avec des forces de Skyrme optimisée pour la matière riche en neutrons. Le travail de cette thèse montre des premières applications à l'étude thermodynamique de systèmes finis, et à des calculs de structure nucléaire pour des noyaux légers. Nous proposerons également une ébauche du formalisme qui permettra à terme de traiter numériquement le problème quantique de la matière infinie d'étoile à l'aide du modèle de dynamique moléculaire.
43

Matière Noire Astronomique et Champs Scalaires

Arbey, Alexandre 17 December 2002 (has links) (PDF)
Cette thèse porte sur le problème de la Matière Noire astrophysique et cosmologique.<br /><br />Dans les quatre premiers chapitres sont exposés succinctement le Modèle Standard Cosmologique, les observations démontrant la présence d'énergie et de matière noires, les modèles de matière noire les plus étudies, et diferents modèles cosmologiques ou astrophysiques reposant sur des champs scalaires. Dans les trois chapitres suivants est détaillé un modèle de matière noire bosonique basé sur l'existence d'un champ scalaire complexe et chargé dans U(1). Nous verrons que couple a un potentiel quadratique, un tel champ est susceptible d'expliquer les courbes de rotation des galaxies, tout en conservant depuis la recombinaison un comportement cosmologique de matière. Nous nous intéresserons ensuite au cas du potentiel quartique, et nous montrerons d'une part que son comportement cosmologique est lui aussi relativement bon, et d'autre part qu'il explique bien les courbes de rotation des galaxies spirales de petite taille, si problématiques pour de nombreux modèles de matière noire.
44

Etoiles laser pour les grands telescopes: effet de cone et implications astrophysiques

Le Louarn, Miska 12 May 2000 (has links) (PDF)
Les performances d'une optique adaptative (OA) avec étoile laser, sur des télescopes de 3.6~m et 8~m de diamètre sont évaluées. L'utilisation d'une étoile laser permet d'améliorer significativement la couverture du ciel (pourcentage du ciel observable): 99~\% du ciel est accessible avec une étoile laser (contre 10~\% avec une étoile naturelle (à 2.2~$\mu$m, latitude et longitude galactique moyenne et un rapport de Strehl de 0.2)). Le nombre de quasars observables avec un rapport de Strehl de plus de 0.2 passe de 357 à 6803. Les performances de l'OA avec étoile laser chutent vers les courtes longueurs d'onde ($<1 \mu$m), à cause de l'effet de cône. Cependant l'étude tridimensionnelle de la turbulence atmosphérique permet de résoudre ce problème. Quatre étoiles laser permettent d'obtenir une bonne correction dans le visible sur un télescope de 8~m (Strehl de 80~\%). Le champ de vue corrigé peut être significativement élargi (100'') avec un Strehl de 30~\%. Des modes élevés de la surface d'onde (tilt, forme particulière de défocalisation et d'astigmatisme) doivent être mesurés à partir d'une étoile naturelle. L'anisoplanétisme appara\^(\i)t dans le champ corrigé, à cause du nombre fini de miroirs déformables utilisés. Les performances d'une OA fonctionnant dans le visible, avec plusieurs étoiles laser (et naturelles) sont estimées sur un télescope de 100~m de diamètre. Il n'y a pas de limitation physique qui empêche d'atteindre, avec une bonne couverture du ciel, une résolution d'une milli-seconde d'arc dans le visible. Le dernier chapitre est consacré à l'étude d'étoiles Mira, avec une OA et un spectrographe intégral de champ, pour localiser par imagerie des ondes de choc dans leur atmosphère.
45

Hot corinos: molécules pré-biotiques autour des protoétoiles de type solaire

Bottinelli, Sandrine 18 October 2006 (has links) (PDF)
L'un des buts majeurs de l'astrophysique moderne est de comprendre la formation du Système Solaire. Puisque les protoétoiles de faible masse sont des soleils en formation, l'étude de ces objets est un des meilleurs moyens d'étudier le processus de formation du Soleil et de son système planétaire. Dans ma thèse, je me suis concentrée sur la chimie des premières phases d'évolution des protoétoiles de faible masse en étudiant les molécules organiques complexes dans des sources de Classe 0, qui représentent les phases les plus jeunes connues. De telles molécules ont été découvertes dans IRAS16293-2422, le prototype des sources de Classe 0, démontrant l'existence des ``hot corinos'', des régions où les manteaux des grains subliment. Certaines de ces molécules ont aussi été observées dans des comètes de notre Système Solaire, soulevant la question de savoir si (et auquel cas, comment) la chimie des Classes 0 affecte la composition chimique de la matière du disque protoplanétaire incorporée dans les comètes et autres corps planétaires.<br />Cependant, il est d'abord nécessaire de déterminer si les hot corinos sont omniprésents dans les protoétoiles de faible masse, ou si IRAS16293-2422 est une exception. Ceci était le premier but de ma thèse. L'approche consistait principalement à observer trois sources de Classe 0 pour chercher des molécules organiques complexes. J'ai ainsi découvert et/ou confirmé trois hot corinos de plus.<br />Le second but était de contraindre la taille de la région d'émission des molécules complexes au moyen d'observations interférométriques des deux hot corinos les plus brillants: cette émission est compacte (<150 AU), avec, dans l'un des cas, une composante étendue provenant de l'enveloppe externe.<br />Le troisième but avait pour lieu de confronter les voies de formation possibles des molécules complexes avec les résultats de mes observations pour essayer de distinguer si ces molécules se forment en phase gazeuse ou à la surface des grains. Bien que mes données ne puissent éliminer aucun des deux cas, elles semblent favoriser le second type de formation. De plus, la comparaison entre hot corinos et leurs homologues massifs, les hot cores (qui montre que les molécules complexes sont relativement plus abondantes dans les hot corinos), soutient également la formation à la surface des grains.
46

Liens entre le formation des nuages mol\éculaires et des étoiles massives: Une étude multi-traceurs et multi-échelles

Nguyen Luong, Quang 24 January 2012 (has links) (PDF)
La formation stellaire a toujours été un des principal domaine de l'astronomie depuis sa naissance. Des processus physiques complexes à différentes échelles (depuis des échelles subparsec jusqu'à des centaines de parsecs) impactent la formation stellaire et font de son étude un sujet compliqué mais intéressant. Le concept basique du gaz interstellaire et de la poussière qui s'effondre une fois que la gravité dépasse la pression pour former des étoiles a été développé par Sir James Jeans en 1928 et par la suite confirmé observationnellement par de nombreux observateurs (e.g. Ambartsumian 1954). Durant les derniers siècles, le progrès de la compréhension de la physique fondamentale gouvernant la formation stellaire a été fait grâce à des observations et des simulations, en particulier avec l'avènement d'observations dans l'infrarouge et le millimétrique d'une part, et des gros supercalculateurs d'autre part. Un schéma unificateur de formation stellaire à vu le jour, statuant que les nuages moléculaires se forment depuis de larges structures de gaz atomique \hi qui se condensent, se fragmentent et forment du gaz moléculaire et de forte densité de poussière. Ils évoluent et forment des structures encore plus dense grâce à d'une part un effondrement gravitationnel et peut être aussi par le biais de flots convergents. En continuant de s'effondrer, ces structures vont former les corps denses qui fourniront la matière et les conditions initiales pour former une seule étoile ou un système multiple d'étoiles. Malheureusement, le détail de nombreux de ces processus n'est pas complètement compris. Aux échelles protostellaires, les questions restantes incluent le processus de la formation protoplanetaire, les mécanismes de mise en place des flots sortants, l'évolution chimique, pour n'en nommer que quelques unes. A des échelles beaucoup plus grandes, i.e. l'échelle des nuages moléculaires, nous ne comprenons pas encore comment les amas étoiles se forment, l'impact des nuages moléculaires sur la formation d'étoiles, la connection entre poussière, gaz et formation d'étoiles, par exemple. Au cours de cette thèse, j'ai pris pour objectif plusieurs problèmes : quel est le lien entre gaz, masse de poussière et taux de formation stellaire (stellar formation rate, ou SFR en anglais). Comment ce lien change entre des environnements galactiques et extragalactiques ? Est-ce que les nuages moléculaires et les étoiles se forment au travers du mécanisme dynamique de flots convergents ? Pour investiguer ces questions, j'ai étudié le contenu du gaz moléculaire et l'activité de formation stellaire de deux nuages moléculaires à différentes échelles spatiales : W43 avec un diamètre de FWHM de $\sim$ 100 pc et G035.39-00.33 avec un diamètre de FWHM de $\sim$ 10 pc , en utilisant différents traceurs de gaz et de poussière. Parmi eux, j'ai utilisé le \hi pour tracer le gaz atomique, CO pour tracer le gaz moléculaire, l'infrarouge lointain et le proche infrarouge pour tracer les activités de formation stellaires, et l'émission de lignes SiO pour tracer les chocs. Pour caractériser le complexe moléculaire de W43 nous avons utilisé un grand ensemble de données du continuum et des lignes moléculaires de traçage extrait de large survey galactique tels que ATLASGAL, GLIMPSE, VGPS et GRS (voir le chapitre 2 ou Nguyen Luong et al. 2011b). Le complexe W43 est remarquablement massif ($M_{total}$ $\sim$ 7.1 $\times 10^6 M_{\odot}$ sur une échelle spatiale de $\sim $140 pc) et a une très large distribution de vitesse de $\sim 22~km.s^{-1}$. Il est à une distance de $\sim$ 6 kpc du soleil, au point de rencontre entre le bras du centaure et de la barre galactique. Nous avons aussi trouvé que W43 a la plus grande concentration de "\textit{clumps}" massifs ($M_{clumps}$ $\sim$ 8.4 $\times 10^5 M_{\odot}$, 12\%), et contient quelques uns des plus denses corps du plan galactique (W43-MM1, W43-MM2 avec $n_{H_2}\sim 8 \times 10^4$ et $4\times 10^8 ~cm^{-3}$~respectivement). L'activité particulière de W43 suggère qu'il s'y passe une petite flambée d'étoiles ($SFR\sim 0.01~M_{\odot}~yr^{-1} $il y a 1 million d'années et $0.1 M_{\odot}yr^{-1}$ dans un futur proche). W43 est entourée par une enveloppe de gaz atomique de large diamètre ($\sim$290 pc), qui peut être la rémanente du gaz $H_I$ ayant formé le nuage moléculaire en premier lieu. Ces caractéristiques sont en accord avec l'appartenance de W43 à la région parfois appelée "anneau moléculaire" qui est connue pour être particulièrement riche en terme de nuages moléculaires et d'activités de formation stellaire. Voir Nguyen Luong et al. (2011b) pour détails. De plus, nous avons effectué, à travers l'ensemble du complexe W43, un nouveau survey avec le 30m de l'IRAM, pour observer les lignes moléculaires $^{13}CO~2-1$ et $C^{18}O~2-1$, les lignes moléculaires traçant le gaz dense telles que $HCO^+$, $N_2H^+$ à travers les sous-régions denses de W43 et un survey à 3~mm de largeur de bande de 8~GHz de W43-Main (voir le chapitre 4). Les résultats initiaux révèlent que les \textit{ridges} W43-MM1 et W43-MM2 subissent un effondrement global supersonic ($2 ~km.s^{-1}$), sur une échelle de quelques parsec. Cela a été mis à jour grâce à la comparaison et la modélisation des lignes d'émission des traceurs de l'optiquement épais tels que $H^{13}CO^+2-1, 1-0$. De l'émission étendue SiO 2-1 est aussi détectée à travers W43-Main, ce qui ne coïncide avec aucune signature de formation stellaire. Avec son lancement réussi, le satellite Herschel nous offre une nouvelle fenêtre d'observation pour l'étude des parties froides des nuages moléculaires, i.e. l'endroit où les étoiles se forment. Nous avons effectué un recensement des populations prestellaires/protostellaires et dérivé le taux de formation stellaire (SFR) pour le nuage W43. Un premier regard indique que W43 formera des étoiles avec efficacité dans le futur (voir section 5.3). Dans le chapitre 3, nous avons utilisé les données Herschel, Spitzer et ATLASGAL pour montrer que le filament IRDC G035.39-00.33 est froid (13-16~K) et dense ($n_{H_2}$ jusqu'à $9 \times 10^{22} cm^{-2}$), le qualifiant alors de "ridge". Ce ridge contient un total de 28 corps denses (FWHM$\sim$0.15 pc), parmi lesquels 13 corps denses massifs (MDCs) avec des masses allant de 20 à 50 $M_{\odot}$ et des densités entre $2-20\times10^5 cm^{-3}$. Les étoiles de masses moyennes jusqu'aux étoiles massives se forment potentiellement dans ces 13 MDCs. Étant donné leur concentration dans le filament IRDC G053.39-00.33, ils participent peut être à une petite flambée de l'activité de formation stellaire avec une SFE (efficience de formation stellaire) $\sim 15\%$, SFR$\sim 300 M_{\odot}~Myr^{-1}$, et $\sum_{SFR}\sim 40 ~M_{\odot} ~yr^{-1}~kpc^{-2}$(Nguyen Luong et al., 2011a). Le lien entre gaz et formation stellaire est évident. Schmidt (1959) fût le premier à énoncer qu'ils sont connectés via une relation entre densité de gaz et SFR : $\sum_{SFR}=A\sum^N_{gaz}$. Comme mentionné dans la section 1.3, cette relation empirique varie énormément en fonction de la nature de l'environnement, de la densité de gaz et des traceurs de formation stellaire que l'on utilise. Le diagramme densité de gaz vs SFR peut être utilisé pour distinguer les galaxies où à lieu une flambée d'étoiles des galaxies où la formation stellaire est normale (e.g. Daddi et al. 2010). Nous allons plus loin en proposant qu'il eut être utilisé pour faire la distinction entre nuage moléculaire où à lieu une flambée d'étoiles et nuage moléculaire formant des étoiles de façon normal . Les relations densité de gaz - SFR pour W43 et IRDC G035.39-00.33 furent comparées avec celles dérivées pour des galaxies externes (Kennicutt, 1998) et celles dérivées des régions de hautes densités formant des étoiles (Heiderman et al. 2010), voir les sections 2.3 et 3.4.2. Il ressort que W43 et IRDC G035.39-00.33 reposent dans le quadrant "flambée d'étoiles" cela dû au fait qu'elles forment des étoiles, et spécialement des étoiles massives, avec beaucoup d'efficacité. Ces deux régions méritent d'être investies plus avant puisqu'elles pourraient représenter un modèle miniature des processus physiques jouant dans les galaxies où ont lieu des flambées d'étoiles. Trouver plus d'exemples de flambée d'étoiles dans la voie lactée est nécessaire pour avoir une vue plus complète. Dans le diagramme densité de gaz - SFR, le complexe moléculaire W43 dans son entier se place entre les zones des galaxies spirales normales et les galaxies où ont lieu des flambées d'étoiles, probablement due au fait que c'est une région formant des étoiles massives, et ainsi traçant la même population stellaire que les mesures extragalactiques. D'un autre coté, les SFRs de IRDC G035.39-00.33 et W43-Main sont plusieurs ordre de grandeur au dessus de celles des galaxies, avec les mêmes densités de gaz (voir Fig. 2.7). Cette divergence est probablement crée par les différentes régions prises en compte dans cette étude. Une comparaison directe entre les relations galactiques et extragalactiques devraient en conséquence être précautionneuse. Cette étude montre aussi que l'intégralité des régions formant des étoiles massives, W43 par exemple, peuvent potentiellement être utilisées pour déduire les SFRs des galaxies. De plus, les régions formant des étoiles massives jouent probablement un rôle substantiel sur la dynamique à grandes échelles des galaxies, ce qui fût proposé pour être l'origine des relations densité de gaz - SFR pour les galaxies (Kennicut, 1998). La théorie des flots convergents est une des théorie prédominante pour expliquer la formation des nuages moléculaires et des étoiles, en particulier celles de grandes masses (Heitsch \& Hartmann, 2008). W43-Main et IRDC G035.39-00.33 forment des étoiles de grandes masses de manière efficace (voir chapitre 2 et 3). Ces régions montrent aussi des émissions étendues de SiO qui s'étendent jusqu'à l'échelle du parsec, sans être corrélées avec des protoétoiles proches. Des chocs provenant de flots sortant sont donc très peu probable pour expliquer ces émissions. Néanmoins, les observations traçant les hautes densités à travers W43-Main montrent qu'elle est en effondrement à de plus grandes échelles que celles des chocs. Ce fait pourrait suggérer que les émissions de SiO viennent de chocs à faibles vitesses à l'interface de collision crées par l'effondrement global. On s'attend à ce que ces chocs soient crées à ces fronts de collision, provoquant une élévation des instabilités dynamique et thermique, menant à une rapide fragmentation du nuage moléculaire et à la formation de corps denses massifs (Heitsch et al., 2008). Les conditions physique dans les modèles de flots convergents (T$\sim$20-100~K, v$\sim$1-10 $km.s^{-1}$) sont suffisantes pour générer des chocs C, mais pas des chocs J. Avec des flots convergents, on s'attend à ce que ces chocs soient largement répandus sur quelques parsecs, vu que la collision à virtuellement lieu partout dans le complexe (des centaines de parsecs). Sur une échelle bien plus large, différents filaments $H_I$ de W43 semblent converger avec un gradient de vitesse vers ces régions de chocs. Toutes ces structures sont baignées dans une grande enveloppe de $H_I$ (diamètre de 290 pc) qui peut être une rémanente du gaz $H_I$ tombé sur W43 pour former le gaz moléculaire. La position particulière de W43, à la jonction entre le bras du centaure et de la barre galactique, implique qu'il devrait subir une forte résonance donnant au gaz un fort moment cinétique pour s'écouler et se heurter violemment. De plus, dans d'autres régions de formation stellaire massive, bien qu'un peu plus faible, des signatures similaires de flots convergents ont étés observées (DR21, Schneider et al. 2010 ; Csengeri et al. 2011). Une conclusion ferme stipulant que les étoiles massives devraient se former d'une façon très dynamique est encore prématurée, mais les études de W43 et d'autres régions, semblent favoriser ce scénario. \\ Localisé à cette position avec des masse et densité extrêmes, et une anormale dispersion de vitesse, il est intéressant d'éclaircir pour W43 le rôle des flots convergents sur la formation des nuages moléculaires et des étoiles. Nous avons construit un grand catalogue contenant à la fois des données de continuum et de lignes moléculaires à travers cette région. Une analyse initiale a visé à étudier sa structure détaillée et sa cinématique. L'étude de sa chimie vient de commencer. Concernant les grandes échelles, nous sommes capable de caractériser les flots grandes échelles de $H_I$ qui forment les nuages moléculaires de W43 en utilisant les cartes de lignes spectrales de $H_I$ provenant des données VGPS. Les diagnostics des flots convergents sont approfondis en utilisant les données CO pour tracer les nuages de basse densité (Motte et al. en prép., Carlhoff et al. en prép.). Ces deux études sont complémentaires en ce qui concerne la cinématique et la dynamique des flots grandes échelles, et peuvent être couplées avec l'étude des activités de formation stellaire en utilisant les données \textit{Herschel} et \textit{Spitzer} pour former une vue cohérente depuis le gaz atomique diffus jusqu'aux clumps les plus denses formant des étoiles. Une recherche plus poussée aux petites échelles et elle aussi nécessaire. Dans le scénario des flots convergents, il semble que les filaments/ridges jouent un rôle majeur en accrétant de la masse sur les corps denses par des processus dynamiques. En prenant avantage des interféromètres existants, tels que IRAM PdBI, SMA, CARMA, nous étudions la cinématique des filaments/ridges en relation avec les corps formant des étoiles, à des résolutions de quelques arcsecondes. Avec l'arrivée prochaine d'ALMA, une nouvelle porte s'ouvre pour permettre la compréhension de la physique et de la chimie des corps et des filaments à des résolutions allant en dessous de l'arcseconde.
47

Liens entre le formation des nuages mol\éculaires et des étoiles massives: Une étude multi-traceurs et multi-échelles

Nguyen Luong, Quang 24 January 2012 (has links) (PDF)
La formation stellaire a toujours été un des principal domaine de l'astronomie depuis sa naissance. Des processus physiques complexes à différentes échelles (depuis des échelles subparsec jusqu'à des centaines de parsecs) impactent la formation stellaire et font de son étude un sujet compliqué mais intéressant. Le concept basique du gaz interstellaire et de la poussière qui s'effondre une fois que la gravité dépasse la pression pour former des étoiles a été développé par Sir James Jeans en 1928 et par la suite confirmé observationnellement par de nombreux observateurs (e.g. Ambartsumian 1954). Durant les derniers siècles, le progrès de la compréhension de la physique fondamentale gouvernant la formation stellaire a été fait grâce à des observations et des simulations, en particulier avec l'avènement d'observations dans l'infrarouge et le millimétrique d'une part, et des gros supercalculateurs d'autre part. Un schéma unificateur de formation stellaire à vu le jour, statuant que les nuages moléculaires se forment depuis de larges structures de gaz atomique \hi qui se condensent, se fragmentent et forment du gaz moléculaire et de forte densité de poussière. Ils évoluent et forment des structures encore plus dense grâce à d'une part un effondrement gravitationnel et peut être aussi par le biais de flots convergents. En continuant de s'effondrer, ces structures vont former les corps denses qui fourniront la matière et les conditions initiales pour former une seule étoile ou un système multiple d'étoiles. Malheureusement, le détail de nombreux de ces processus n'est pas complètement compris. Aux échelles protostellaires, les questions restantes incluent le processus de la formation protoplanetaire, les mécanismes de mise en place des flots sortants, l'évolution chimique, pour n'en nommer que quelques unes. A des échelles beaucoup plus grandes, i.e. l'échelle des nuages moléculaires, nous ne comprenons pas encore comment les amas étoiles se forment, l'impact des nuages moléculaires sur la formation d'étoiles, la connection entre poussière, gaz et formation d'étoiles, par exemple. Au cours de cette thèse, j'ai pris pour objectif plusieurs problèmes : quel est le lien entre gaz, masse de poussière et taux de formation stellaire (stellar formation rate, ou SFR en anglais). Comment ce lien change entre des environnements galactiques et extragalactiques ? Est-ce que les nuages moléculaires et les étoiles se forment au travers du mécanisme dynamique de flots convergents ? Pour investiguer ces questions, j'ai étudié le contenu du gaz moléculaire et l'activité de formation stellaire de deux nuages moléculaires à différentes échelles spatiales : W43 avec un diamètre de FWHM de $\sim$ 100 pc et G035.39-00.33 avec un diamètre de FWHM de $\sim$ 10 pc , en utilisant différents traceurs de gaz et de poussière. Parmi eux, j'ai utilisé le \hi pour tracer le gaz atomique, CO pour tracer le gaz moléculaire, l'infrarouge lointain et le proche infrarouge pour tracer les activités de formation stellaires, et l'émission de lignes SiO pour tracer les chocs. Pour caractériser le complexe moléculaire de W43 nous avons utilisé un grand ensemble de données du continuum et des lignes moléculaires de traçage extrait de large survey galactique tels que ATLASGAL, GLIMPSE, VGPS et GRS (voir le chapitre 2 ou Nguyen Luong et al. 2011b). Le complexe W43 est remarquablement massif ($M_{total}$ $\sim$ 7.1 $\times 10^6 M_{\odot}$ sur une échelle spatiale de $\sim $140 pc) et a une très large distribution de vitesse de $\sim 22~km.s^{-1}$. Il est à une distance de $\sim$ 6 kpc du soleil, au point de rencontre entre le bras du centaure et de la barre galactique. Nous avons aussi trouvé que W43 a la plus grande concentration de "\textit{clumps}" massifs ($M_{clumps}$ $\sim$ 8.4 $\times 10^5 M_{\odot}$, 12\%), et contient quelques uns des plus denses corps du plan galactique (W43-MM1, W43-MM2 avec $n_{H_2}\sim 8 \times 10^4$ et $4\times 10^8 ~cm^{-3}$~respectivement). L'activité particulière de W43 suggère qu'il s'y passe une petite flambée d'étoiles ($SFR\sim 0.01~M_{\odot}~yr^{-1} $il y a 1 million d'années et $0.1 M_{\odot}yr^{-1}$ dans un futur proche). W43 est entourée par une enveloppe de gaz atomique de large diamètre ($\sim$290 pc), qui peut être la rémanente du gaz $H_I$ ayant formé le nuage moléculaire en premier lieu. Ces caractéristiques sont en accord avec l'appartenance de W43 à la région parfois appelée "anneau moléculaire" qui est connue pour être particulièrement riche en terme de nuages moléculaires et d'activités de formation stellaire. Voir Nguyen Luong et al. (2011b) pour détails. De plus, nous avons effectué, à travers l'ensemble du complexe W43, un nouveau survey avec le 30m de l'IRAM, pour observer les lignes moléculaires $^{13}CO~2-1$ et $C^{18}O~2-1$, les lignes moléculaires traçant le gaz dense telles que $HCO^+$, $N_2H^+$ à travers les sous-régions denses de W43 et un survey à 3~mm de largeur de bande de 8~GHz de W43-Main (voir le chapitre 4). Les résultats initiaux révèlent que les \textit{ridges} W43-MM1 et W43-MM2 subissent un effondrement global supersonic ($2 ~km.s^{-1}$), sur une échelle de quelques parsec. Cela a été mis à jour grâce à la comparaison et la modélisation des lignes d'émission des traceurs de l'optiquement épais tels que $H^{13}CO^+2-1, 1-0$. De l'émission étendue SiO 2-1 est aussi détectée à travers W43-Main, ce qui ne coïncide avec aucune signature de formation stellaire. Avec son lancement réussi, le satellite Herschel nous offre une nouvelle fenêtre d'observation pour l'étude des parties froides des nuages moléculaires, i.e. l'endroit où les étoiles se forment. Nous avons effectué un recensement des populations prestellaires/protostellaires et dérivé le taux de formation stellaire (SFR) pour le nuage W43. Un premier regard indique que W43 formera des étoiles avec efficacité dans le futur (voir section 5.3). Dans le chapitre 3, nous avons utilisé les données Herschel, Spitzer et ATLASGAL pour montrer que le filament IRDC G035.39-00.33 est froid (13-16~K) et dense ($n_{H_2}$ jusqu'à $9 \times 10^{22} cm^{-2}$), le qualifiant alors de "ridge". Ce ridge contient un total de 28 corps denses (FWHM$\sim$0.15 pc), parmi lesquels 13 corps denses massifs (MDCs) avec des masses allant de 20 à 50 $M_{\odot}$ et des densités entre $2-20\times10^5 cm^{-3}$. Les étoiles de masses moyennes jusqu'aux étoiles massives se forment potentiellement dans ces 13 MDCs. Étant donné leur concentration dans le filament IRDC G053.39-00.33, ils participent peut être à une petite flambée de l'activité de formation stellaire avec une SFE (efficience de formation stellaire) $\sim 15\%$, SFR$\sim 300 M_{\odot}~Myr^{-1}$, et $\sum_{SFR}\sim 40 ~M_{\odot} ~yr^{-1}~kpc^{-2}$(Nguyen Luong et al., 2011a). Le lien entre gaz et formation stellaire est évident. Schmidt (1959) fût le premier à énoncer qu'ils sont connectés via une relation entre densité de gaz et SFR : $\sum_{SFR}=A\sum^N_{gaz}$. Comme mentionné dans la section 1.3, cette relation empirique varie énormément en fonction de la nature de l'environnement, de la densité de gaz et des traceurs de formation stellaire que l'on utilise. Le diagramme densité de gaz vs SFR peut être utilisé pour distinguer les galaxies où à lieu une flambée d'étoiles des galaxies où la formation stellaire est normale (e.g. Daddi et al. 2010). Nous allons plus loin en proposant qu'il eut être utilisé pour faire la distinction entre nuage moléculaire où à lieu une flambée d'étoiles et nuage moléculaire formant des étoiles de façon normal . Les relations densité de gaz - SFR pour W43 et IRDC G035.39-00.33 furent comparées avec celles dérivées pour des galaxies externes (Kennicutt, 1998) et celles dérivées des régions de hautes densités formant des étoiles (Heiderman et al. 2010), voir les sections 2.3 et 3.4.2. Il ressort que W43 et IRDC G035.39-00.33 reposent dans le quadrant "flambée d'étoiles" cela dû au fait qu'elles forment des étoiles, et spécialement des étoiles massives, avec beaucoup d'efficacité. Ces deux régions méritent d'être investies plus avant puisqu'elles pourraient représenter un modèle miniature des processus physiques jouant dans les galaxies où ont lieu des flambées d'étoiles. Trouver plus d'exemples de flambée d'étoiles dans la voie lactée est nécessaire pour avoir une vue plus complète. Dans le diagramme densité de gaz - SFR, le complexe moléculaire W43 dans son entier se place entre les zones des galaxies spirales normales et les galaxies où ont lieu des flambées d'étoiles, probablement due au fait que c'est une région formant des étoiles massives, et ainsi traçant la même population stellaire que les mesures extragalactiques. D'un autre coté, les SFRs de IRDC G035.39-00.33 et W43-Main sont plusieurs ordre de grandeur au dessus de celles des galaxies, avec les mêmes densités de gaz (voir Fig. 2.7). Cette divergence est probablement crée par les différentes régions prises en compte dans cette étude. Une comparaison directe entre les relations galactiques et extragalactiques devraient en conséquence être précautionneuse. Cette étude montre aussi que l'intégralité des régions formant des étoiles massives, W43 par exemple, peuvent potentiellement être utilisées pour déduire les SFRs des galaxies. De plus, les régions formant des étoiles massives jouent probablement un rôle substantiel sur la dynamique à grandes échelles des galaxies, ce qui fût proposé pour être l'origine des relations densité de gaz - SFR pour les galaxies (Kennicut, 1998). La théorie des flots convergents est une des théorie prédominante pour expliquer la formation des nuages moléculaires et des étoiles, en particulier celles de grandes masses (Heitsch \& Hartmann, 2008). W43-Main et IRDC G035.39-00.33 forment des étoiles de grandes masses de manière efficace (voir chapitre 2 et 3). Ces régions montrent aussi des émissions étendues de SiO qui s'étendent jusqu'à l'échelle du parsec, sans être corrélées avec des protoétoiles proches. Des chocs provenant de flots sortant sont donc très peu probable pour expliquer ces émissions. Néanmoins, les observations traçant les hautes densités à travers W43-Main montrent qu'elle est en effondrement à de plus grandes échelles que celles des chocs. Ce fait pourrait suggérer que les émissions de SiO viennent de chocs à faibles vitesses à l'interface de collision crées par l'effondrement global. On s'attend à ce que ces chocs soient crées à ces fronts de collision, provoquant une élévation des instabilités dynamique et thermique, menant à une rapide fragmentation du nuage moléculaire et à la formation de corps denses massifs (Heitsch et al., 2008). Les conditions physique dans les modèles de flots convergents (T$\sim$20-100~K, v$\sim$1-10 $km.s^{-1}$) sont suffisantes pour générer des chocs C, mais pas des chocs J. Avec des flots convergents, on s'attend à ce que ces chocs soient largement répandus sur quelques parsecs, vu que la collision à virtuellement lieu partout dans le complexe (des centaines de parsecs). Sur une échelle bien plus large, différents filaments $H_I$ de W43 semblent converger avec un gradient de vitesse vers ces régions de chocs. Toutes ces structures sont baignées dans une grande enveloppe de $H_I$ (diamètre de 290 pc) qui peut être une rémanente du gaz $H_I$ tombé sur W43 pour former le gaz moléculaire. La position particulière de W43, à la jonction entre le bras du centaure et de la barre galactique, implique qu'il devrait subir une forte résonance donnant au gaz un fort moment cinétique pour s'écouler et se heurter violemment. De plus, dans d'autres régions de formation stellaire massive, bien qu'un peu plus faible, des signatures similaires de flots convergents ont étés observées (DR21, Schneider et al. 2010 ; Csengeri et al. 2011). Une conclusion ferme stipulant que les étoiles massives devraient se former d'une façon très dynamique est encore prématurée, mais les études de W43 et d'autres régions, semblent favoriser ce scénario. \\ Localisé à cette position avec des masse et densité extrêmes, et une anormale dispersion de vitesse, il est intéressant d'éclaircir pour W43 le rôle des flots convergents sur la formation des nuages moléculaires et des étoiles. Nous avons construit un grand catalogue contenant à la fois des données de continuum et de lignes moléculaires à travers cette région. Une analyse initiale a visé à étudier sa structure détaillée et sa cinématique. L'étude de sa chimie vient de commencer. Concernant les grandes échelles, nous sommes capable de caractériser les flots grandes échelles de $H_I$ qui forment les nuages moléculaires de W43 en utilisant les cartes de lignes spectrales de $H_I$ provenant des données VGPS. Les diagnostics des flots convergents sont approfondis en utilisant les données CO pour tracer les nuages de basse densité (Motte et al. en prép., Carlhoff et al. en prép.). Ces deux études sont complémentaires en ce qui concerne la cinématique et la dynamique des flots grandes échelles, et peuvent être couplées avec l'étude des activités de formation stellaire en utilisant les données \textit{Herschel} et \textit{Spitzer} pour former une vue cohérente depuis le gaz atomique diffus jusqu'aux clumps les plus denses formant des étoiles. Une recherche plus poussée aux petites échelles et elle aussi nécessaire. Dans le scénario des flots convergents, il semble que les filaments/ridges jouent un rôle majeur en accrétant de la masse sur les corps denses par des processus dynamiques. En prenant avantage des interféromètres existants, tels que IRAM PdBI, SMA, CARMA, nous étudions la cinématique des filaments/ridges en relation avec les corps formant des étoiles, à des résolutions de quelques arcsecondes. Avec l'arrivée prochaine d'ALMA, une nouvelle porte s'ouvre pour permettre la compréhension de la physique et de la chimie des corps et des filaments à des résolutions allant en dessous de l'arcseconde.
48

Propriétés de polymères auto-assemblés : influence de la suppression des échanges dynamiques par photo-réticulation

Puaud, Fanny 23 September 2013 (has links) (PDF)
Les copolymères diblocs amphiphiles poly(oxyde d'éthylène)-b-poly(acrylate de méthacryloyloxyéthyle) s'autoassocient dans l'eau pour former des micelles, tout en conservant un échange d'unimères. Dans les suspensions denses, leur coincement conduit à une transition liquide-solide. Dans l'état solide, elles peuvent s'ordonner et un état cristallin apparait. Si l'échange d'unimères est supprimé, les micelles ne sont plus dynamiques et se comportent comme des étoiles, qui montrent un comportement similaire mais avec des différences sur les propriétés rhéologiques et structurales. L'une des méthodes permettant de créer des étoiles est de photo-réticuler le coeur des micelles. L'objectif de cette thèse à été d'analyser l'influence de l'échange d'unimères sur la transition liquide-solide et la cristallisation. Les copolymères ont été synthétisés par une nouvelle technique de polymérisation radicalaire contrôlée, la Single-Electron Transfer-Living Radical Polymerization (SET-LRP). Par diffusion de la lumière, il a été montré que le nombre de bras des étoiles pouvait être contrôlé par la concentration à laquelle les micelles étaient réticulées. Nous avons montré par rhéologie quel'absence d'échange de bras facilitait la transition liquide-solide. Les étoiles présentent la même transition liquide-solide que les micelles, à condition que le nombre de bras des étoiles atteigne une valeur critique. La cristallisation a été étudiée par diffusion des rayons-X. La dynamique d'échange n'a pas d'influence directe sur la cristallisation. La cristallisation et la transition liquide-solide sont facilitées par l'auto-adaptation du nombre de bras, permise par l'échange dynamique.
49

Exploring S stars: stellar parameters, abundances and constraints on the s-process from a new grid of model atmospheres

Neyskens, Pieter 08 January 2014 (has links)
More than 80% of the stars in the Universe are expected to have initial masses below eight to ten times the mass of our sun. These low mass stars, including our sun, become cool red giants during one of the final evolutionary stages of their life: the Asymptotic Giant Branch (or AGB) phase. AGB stars are among the main producers of carbon and heavy (s-process) elements in the Universe. These elements are synthesized inside the star and mixed to the stellar atmosphere where stellar winds are responsible for the loss of more than 50% of the stellar mass, hence, AGB stars are strong polluters of the interstellar medium. The ejected material can clump together into dusty particles which may serve as ingredients for the birth of new stars and planets. When most of the AGB stellar envelope is lost, the AGB star stops releasing nuclear energy from interior processes and swaps its giant face for a planetary nebulae look, whereafter it fades away as a white dwarf.<p><p>The dredge-up of carbon and s-process elements into the AGB atmosphere causes an important chemical anomaly among them: initial oxygen-rich stars (M stars) are transformed into carbon-rich stars (C stars). As a consequence, a group of oxygen-rich AGB stars exists which makes the transition between M and C stars. These transition stars are classified as S.<p><p>Although AGB stars are identified as producers of heavy elements, their nucleosynthesis and mixing processes are weakly constrained due to large uncertainties on their estimated temperature, gravity and chemical composition. Stronger constraints on the atmospheric parameter space, hence interior processes, of AGB stars can be obtained by investigating the atmosphere of S stars. Since they are transition objects on the AGB, they trace the rise of the s-process. S stars are less numerous than C stars, but their optical spectra are brighter making it easier to identify atomic and molecular lines. Therefore, S stars belong to the most interesting objects along the AGB to perform this task.<p><p><p><p>From a practical point of view, the spectra of S stars are extremely difficult to study since they are dominated by different, overlapping molecular bands, and the spectral shape may vary strongly from star to star due to their transition status. Therefore, tailored model atmospheres for S stars are of utmost importance to understand the spectroscopic, and even photometric, changes in terms of variations in the atmospheric parameters. A comparison between the models and observations aims not only at constraining the atmospheric parameter space of S stars, it will also test the reliability of 1D state-of-the-art model atmospheres for such complex stars.<p><p><p><p>From an evolutionary point of view, the S-star family is contaminated with stars who gained their atmospheric enrichment in heavy elements from a companion star. Evidences were found that these binary S stars are not at all located on the AGB, hence, they are labelled as extrinsic S stars while S stars on the AGB are labelled as intrinsic. The difference in evolutionary stages between intrinsic and extrinsic S stars was already found 20 years ago, however, a separation in terms of surface temperature, gravity and chemical composition is not well-established due to the lack of S-star model atmospheres. Such a distinction in atmospheric parameters will facilitate the discovery of these intruders and even help to calibrate stellar evolutionary models of single and binary stars.<p>To achieve these goals, the first step consists in the construction of a grid of model atmospheres for S stars. The grid will be used to quantify the influence of atmospheric parameters on the model structure and emergent flux. These results will be analyzed to derive precise atmospheric parameters of observed S stars, using a set of well-defined photometric and spectroscopic indices. Once the best model atmosphere has been selected for all observed S stars, their atmospheric parameters will be discussed in view of their evolutionary stage. The best-fitting model atmosphere will also be used to derive abundances from spectral syntheses. The abundance profiles are compared with stellar evolution model prediction to constrain nucleosynthesis and mixing processes inside S stars. Derived abundances of unstable elements will be used to estimate, for the first time, the age of AGB stars. Finally, their abundance profile will be discussed as a function of their time spent on the AGB. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
50

Kinematics and dynamics pf giant stars in the solar neighbourhood

Famaey, Benoît 29 September 2004 (has links)
We study the motion of giant stars in the Solar neighbourhood and what they tell us about the dynamics of the Galaxy: we thus contribute to the huge project of understanding the structure and evolution of the Galaxy as a whole. <p><p>We present a kinematic analysis of 5952 K and 739 M giant stars which includes for the first time radial velocity data from an important survey performed with the CORAVEL spectrovelocimeter at the Observatoire de Haute Provence. Parallaxes from the Hipparcos catalogue and proper motions from the Tycho-2 catalogue are also used.<p><p>A maximum-likelihood method, based on a bayesian approach, is applied to the data, in order to make full use of all the available stars, and to derive the kinematic properties of the subgroups forming a rich small-scale structure in velocity space. Isochrones in the Hertzsprung-Russell diagram reveal a very wide range of ages for stars belonging to these subgroups, which are thus most probably related to the dynamical perturbation by transient spiral waves rather than to cluster remnants. A possible explanation for the presence of young group/clusters in the same area of velocity space is that they have been put there by the spiral wave associated with their formation, while the kinematics of the older stars of our sample has also been disturbed by the same wave. The emerging picture is thus one of "dynamical streams" pervading the Solar neighbourhood and travelling in the Galaxy with a similar spatial velocity. The term "dynamical stream" is more appropriate than the traditional term "supercluster" since it involves stars of different ages, not born at the same place nor at the same time. We then discuss, in the light of our results, the validity of older evaluations of the Solar motion in the Galaxy. <p><p>We finally argue that dynamical modeling is essential for a better understanding of the physics hiding behind the observed kinematics. An accurate axisymmetric model of the Galaxy is a necessary starting point in order to understand the true effects of non-axisymmetric perturbations such as spiral waves. To establish such a model, we develop new galactic potentials that fit some fundamental parameters of the Milky Way. We also develop new component distribution functions that depend on three analytic integrals of the motion and that can represent realistic stellar disks. / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Page generated in 0.0525 seconds