• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 15
  • 15
  • 12
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 36
  • 30
  • 21
  • 15
  • 15
  • 15
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microstructural, Mechanical and Oxidation Behavior of Ni-Al-Zr Intermetallic Eutectic Alloys

Gunjal, Vilas Vishnu January 2016 (has links) (PDF)
The excellent high temperature microstructure stability, high strength, and oxidation resistance of intermetallics has for long driven the development of intermetallic based alloys. More recent studies demonstrated attractive properties of eutectic intermetallic in the Ni-Al-Zr systems. This thesis deals with study of binary Ni3Al+Ni7Zr2, NiAl+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary intermetallic eutectic alloys in this system and includes the identification of compositions that would yield each eutectic structure and their microstructural characterization, mechanical and oxidation behavior. The thesis is divided into six chapters. Chapter 1 reviews the study on high temperature materials development and presents the objectives of work in the current thesis. Various experimental techniques used for alloy preparation (vacuum arc melting and vacuum suction casting), microstructural characterization (optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray Diffraction (XRD), electron probe micro analyzer (EPMA), differential scanning calorimetry (DSC)), compression tests, microhardness tests and thermo gravimetric analysis (TGA) are described in Chapter 2. The specific background of work related to each chapter together with experimental results and discussion are given in next three chapters. Chapter 3 reports the method of identification of the composition for each of the eutectic alloys referred to above. The identification of alloy compositions of binary eutectics Ni3Al+Ni7Zr2 (Ni-13.5Al-11Zr), NiAl+Ni7Zr2 (Ni-19Al-12Zr) and Ni3Al+NiAl+Ni7Zr2 ternary eutectic (Ni-18.4Al-11.6Zr) is carried out with the help of available liquidus projection of Ni-Al-Zr system, and the iterative melting of numerous compositions that were refined to define the critical compositions for each eutectic. The microstructural features of these alloys have been characterized using optical and electron microscopy. Phase identification is confirmed by X ray diffraction, EPMA and TEM. The microstructure of Ni3Al+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary eutectic alloy shows similar eutectic morphologies. The eutectic colony consists of lamellar plates at center and intermixed lamellar-rod irregular morphologies towards the boundaries of the colonies. However, the NiAl+Ni7Zr2 eutectic alloy shows a fine, lamellar plate morphology throughout the microstructure. The orientation relationship between eutectic phases is determined using TEM technique for each alloy composition. Onsets of melting and liquidus temperatures have been identified by Differential Scanning Calorimetry. Modified liquidus projections of Ni-Al-Zr system near the Ni3Al+NiAl+Ni7Zr2 ternary eutectic region have been derived from present experimental work. Chapter 4 focuses on understanding the mechanical behaviour of these individual eutectics at room temperature and high temperature. An attempt has been made to correlate the microstructure and mechanical properties of eutectics by measuring room temperature hardness, compressive yield strength at various temperatures, and examination of slip bands, crack initiation and fractography. It is observed that NiAl+Ni7Zr2 eutectic possesses the highest yield strength and hardness followed by ternary eutectic and then the Ni3Al+Ni7Zr2 eutectic. The yield strength of these eutectics decreases rapidly beyond 700oC and this decrease is accompanied by substantial increase in compressive ductility and steady state flow, with little work hardening. Chapter 5 explores the isothermal oxidation behavior at high temperatures of these eutectic alloys. Oxidation kinetics have been measured at various temperatures (900oC, 1000oC, 1050oC and 1100oC) are carried out using the thermo gravimetric analysis technique (TGA). The oxidation behavior has been characterized using TGA, X ray diffraction and EPMA. The Top surface of oxide layer shows compact, NiO layer with a fine grain size. The cross section of oxide samples shows five distinct microstructural and compositional layers at steady state. Attempt has been made to understand the oxidation mechanism, sequence of layer formation in correlation with microstructure and weight gains, rate constants and activation energy analysis. Finally Chapter 6 presents a summary of the current work and suggests for further work.
42

A comparative study of die attach strategies for use in harsh environments

Moreira de Sousa, Micaela Filipa January 2012 (has links)
Well-logging and aerospace applications require electronics capable of withstanding elevated temperature operation. A key element of high temperature packaging technology is the Si die attach material, and a comparative study of two die attach systems for use in harsh environment has been performed. Die bond sample packages, using commercial adhesives and an Au-Si eutectic solder, have been manufactured and were subsequently thermally exposed for various times at 250 and 300°C respectively. The adhesive die bond packages comprised a high temperature co-fired ceramic (HTCC) substrate with W, Ni and Au metallisations whereas the Au-Si die bond packages used thick film Au metallised on a Al₂O₃ substrate. Optimisation of the eutectic die bonding parameters was successfully performed for the Au-Si system by an experimental design method, which improved mean and spread of maximum bonded areas and consequently, the shear load to failure. Bonded area was systematically assessed by scanning acoustic microscopy (SAM) followed by digital image analysis (DIA). Accelerated testing comprised thermal cycling and thermal shock and although showing some degradation, Au-2wt%Si die bonds were surprisingly robust, showing excellent subsequent stability during industrial device testing investigations.
43

The electrodeposition of tin coatings from deep eutectic solvents and their subsequent whisker growth

Stuttle, Christopher January 2014 (has links)
Tin electrodeposits produced from aqueous electrolytes are frequently used within the electronics industry due to their high solderability and corrosion protection. One limitation to using these deposits is their spontaneous formation of long conductive filament whiskers. These whiskers grow post-electrodeposition and increase the risk of unwanted electrical shorts within electronic devices. In this thesis, tin electrodeposits produced from a proprietary bright acid Tinmac electrolyte, currently used in industry, were studied. Electrodeposits were produced using a range of current densities with and without agitation and were characterised with respect to crystallographic orientation, topography and surface finish. Moreover, the intermetallic compound (IMC) growth produced at the copper substrate-tin coating interface was assessed over a period of time as its growth is considered to be a significant driving force behind whisker formation. In addition, a technique for the electrochemical anodic oxidation of tin electrodeposits on copper substrates was developed. This technique was used throughout this project for the study of IMC growth from tin electrodeposits as it was able to effectively remove the tin whilst leaving the IMCs and substrate unaffected. Ionic liquids exhibit promising electrochemical characteristics for electrodeposition but are still not widely utilised in industry. Their ability to deposit tin coatings has been studied in the present investigation. Trials concentrated on process optimisation to produce uniform electrodeposits by varying current density, SnCl2.2H2O concentration, and electrolyte composition. These deposits were then characterised and compared to tin coatings of similar thickness produced from Tinmac with respect to topography, surface finish, crystallographic orientation, IMC growth, and whisker propensity. Electrodeposits produced from the ionic liquid electrolyte exhibited a different crystallographic texture, topography, and IMC growth compared to those produced from Tinmac. Moreover, the deposit produced from the ionic liquid featured increased whisker growth compared to those produced from Tinmac, but in a wider context, far less growth than conventional tin electrodeposits in the literature. In addition, by exploiting other electrochemical characteristics of ionic liquids, such as their large potential window, future work may be able to produce novel tin or tin alloy electrodeposits which may further reduce the whisker propensity of deposits produced in this investigation.
44

Preparação e caracterização de uma mistura eutética baseada em um derivado de óleo essencial extraído do Syzygium aromaticum L. / Preparation and characterization of a eutectic mixture based in an essential oil derivative extracted from Syzygium aromaticum L.

Santos, Amanda Luizetto dos 07 May 2010 (has links)
A planta Syzygium aromaticum L. produz os botões secos do cravo da índia, do qual se extrai o óleo essencial. O componente majoritário deste óleo é o eugenol, cujas algumas de suas propriedades farmacológicas são atividades fungicida, bactericida, anestésico, entre outros. No entanto, o eugenol (EUG) foi convertido a acetato de eugenila (AE) pela adição do íon acetato, na ligação do grupo hidroxila. Esta modificação foi realizada devido aos problemas relacionados à solubilidade, o que estabelece uma difícil relação com sua biodisponibilidade, e então, limitando sua utilização em preparações farmacêuticas. Em seguida, uma mistura eutética foi preparada empregando o acetato de eugenila como princípio ativo, e o polietilenoglicol 3350 (PEG) como carreador hidrofílico. O diagrama de fases apontou a mistura eutética com composição de 80% de AE e 20% PEG. As características térmicas no ponto eutético foram de 21,33° C para temperatura de pico e 5,71Jg-1 a energia envolvida no processo de fusão. Dessa maneira, a taxa de permeabilidade e a solubilidade do acetato de eugenila serão aprimoradas, contribuindo para o aumento de sua biodisponibilidade e assim, viabilizando sua utilização em formulações farmacêuticas. / The Syzygium aromaticum L. plant produces the cloves buds which are dried. From these dried buds the essential oil is extracted. The major compound is eugenol. Some of eugenol\'s pharmacological properties include fungicidal, bactericidal, anesthetic, and other activities. However, eugenol (EUG) was modified to eugenyl acetate (EA) by adding the acetate group to the bound hydroxyl. The modification was performed in order to eliminate the solubility problems which cause a difficult relationship with bioavailability. The solubility problem restrains its use in pharmaceutical formulations. A eutectic mixture was prepared using the eugenyl acetate as the principal active ingredient and a polyethyleneglycol 3350 (PEG) as the hydrophilic carrier. The phase diagram demonstrated that the eutectic mixture occurred with 80% EA and 20% PEG composition. The thermal characteristics at the eutectic point were 21.33°C for the peak temperature and 5.71Jg-1 for the energy of fusion. Thus, the rate of permeability and solubility of eugenyl acetate will be enhanced. This will contribute to an increase in its bioavailability, thus promoting its use in pharmaceutical formulations.
45

Functionalisation of cucurbit[n]uril and exploring deep eutectic solvents as a medium for supramolecular chemistry

McCune, Jade Alexis January 2018 (has links)
No description available.
46

Alloying Aluminum with Transition Metals

Fan, Yangyang 04 May 2015 (has links)
A castable alloy, i.e., one that flows easily to fill the entire mold cavity and also has resistance to hot tearing during solidification, must invariably contain a sufficient amount of a eutectic structure. For this reason, most traditional aluminum casting alloys contain silicon because the aluminum-silicon eutectic imparts to the alloy excellent casting characteristics. However, the solidus temperature in the Al-Si system does not exceed 577°C, and the major alloying elements (i.e., zinc, magnesium, and copper) used with silicon in these alloys further lower the solidus temperature. Also, these elements have high diffusivity in aluminum and so, while they enhance the room temperature strength of the alloy, they are not useful at elevated temperatures. Considering nickel-base super alloys, whose mechanical properties are retained up to temperatures that approach 75% of their melting point, it is conceivable that castable aluminum alloys can be developed on the same basis so that they are useful at temperatures approaching 350C. A castable aluminum alloy intended for high temperature applications must contain a eutectic structure that is stable at temperatures higher than 600°C, and must contain second phase precipitate particles that are thermodynamically stable at the service temperature. Transition metal trialuminides with the general chemical formula AlxTMy in which TM is a transition metal, are excellent candidates for both the eutectic structure and the precipitate particles. In this research, the use of transition metals in the constitution of aluminum casting alloys is investigated with emphasis on the morphology, crystallography, and mechanisms of formation of the various phases.
47

Exploring Selectivity and Hysteresis : Kinetic Studies on a Potato Epoxide Hydrolase

Lindberg, Diana January 2010 (has links)
The kinetic mechanism of an α/β hydrolase fold epoxide hydrolase from potato, StEH1, has been studied with the aims of explaining the underlying causes for enantio- and regioselectivity, both being important for product purity. Further effort has been laid upon understanding the causes of a hysteretic behavior discovered in the measurements leading to Paper I. The enantioselectivity was investigated with substrates differing only in substituent size at one carbon of the oxirane ring structure. In catalysis with trans-stilbene oxide and styrene oxide, enantioselectivity is the result of differences in alkylation rates. In pre-steady state measurement with trans-2-methylstyrene oxide (2-MeSO), a rate-limiting step involving slow transitions, referred to as hysteresis, was discovered. With this substrate enantioselectivity is proposed to be a consequence of the catalytic rate of (1R,2R)-enantiomer being more influenced by the hysteretic behavior than was the rate of the other enantiomer. In steady-state measurements with (1R,2R)-2-MeSO, at different temperatures and pH, hysteretic cooperativity was displayed. It can be concluded that this behavior is dependent on the relationship between kcat and the rate of transition between two Michaelis complexes. From the differences in pH dependence of kcat/KM in formation of the two diols resulting from low regioselectivity in catalysis of (1R,2R)-2-MeSO, it is suggested that hysteresis is a result of the substrates placed in different conformational modes within the active site cavity. Regioselectivity is proposed to be the result of specific interactions between the catalytically important Tyr and the substrate, with a link between KM-values and degree of regioselectivity. Furthermore, the hysteretic kinetic model proposed can explain hysteresis, cooperativity and regioselectivity resulting from StEH1 catalyzed hydrolysis of (1R,2R)-2-MeSO.
48

CONQUER CORROSION : Key issues of the lead-cooled fast reactor design

Hareland, Mathias January 2011 (has links)
The lead-cooled fast reactor (LFR) is one of the concepts of the Generation IV reactorsystems. There are some issues that have to be solved before a research orcommercial LFR can be built. The objective of this thesis was to identify these keyissues and analyse them by studying results from previous research: choice of fuel,corrosion on structural materials and corrosion/erosion on pumps.The major fuel candidates for the LFR are MOX fuel (Mixed OXide fuel), metallic fuel,nitride fuel and carbide fuel. Nitride fuel has desirable properties but its production ismore difficult than for MOX fuel.Most of today’s commercial steels are not corrosion resistant at higher temperaturesbut they could possibly be used for an LFR test demonstrator with an operatingtemperature lower than 450 ºC. A new type of steel called oxide dispersionstrengthened (ODS) steel and a new ceramic material MAXTHAL both showpromising corrosion resistance even at higher temperatures.By controlling the oxygen concentration a protective oxide film is produced. Flowingliquid coolant causes erosion and wears down the oxide film. Pumps are exposed tocoolant velocities of 10-15 m/s causing both erosion and corrosion. There is nosolution today, but MAXTHAL shows promising results in tests with liquid lead of lowvelocity. There are also other issues unsolved, such as irradiation damage onstructural materials, thus more research is needed.Economic and political aspects were not covered in this study. This thesis work wasperformed at Vattenfall Research and Development AB.
49

Non-isothermal Crystallization Kinetics, Multiple Melting Behaviors and Crystal Structure Simulation of Poly[(ethylene)-co-(trimethylene terephthalate)]s

Ko, Chi-Yun 26 July 2003 (has links)
Non-isothermal crystallization of the PET/PTT copolyesters was studied at five different cooling rates over 1-20oC/min by means of differential scanning calorimetry (DSC). Both the Ozawa equation and the modified Avrami equation have been used to analyze the crystallization kinetics. The non-isothermal kinetics of most copolymers cannot be described by the Ozawa analysis, except the copolyester with a composition of 66.3% trimethylene- (TT) and 33.7 %ethylene- terephthalates (ET). It may be due to the inaccuracy of the Ozawa assumptions, such as the secondary crystallization is neglected. From the kinetic analysis using the modified Avrami equation, the Avrami exponents, n, were found to be in the range of 2.43-4.67 that are dependent on the composition of the copolyesters. The results indicated that the primary crystallization of the PET/PTT copolymers followed a heterogeneous nucleation and a spherulitic growth mechanism during the non-isothermal crystallization. In the cases of the copolyesters with either TT or ET less than 10%, we found the molten temperature is a key factor to decide whether the Ozawa equation can be succeeded in analyzing the dynamic crystallization. For the non-isothermal crystallization, a single exothermic peak was detected in each DSC curve regardless of the composition and the cooling rate. It indicated that a single-mode distribution of the crystallite sizes was formed during the cooling process. After the non-isothermal crystallization, the melting behavior of the specimens was monitored by temperature modulated DSC (TMDSC) in the conventional mode and the modulated mode. Multiple endothermic peaks were observed in both modes. The wide-angle X-ray diffraction (WAXD) patterns of these copolymers showed that the peak height became sharper and sharper as the crystallization temperature increased, but the position of the diffraction peaks did not change apparently. It indicated that the multiple melting behaviors did not originate from the melting of the crystals with different structures. The melting behavior of these PET/PTT copolyesters can be explained logically by using the melt-recrystallization model. From the reversing and non-reversing signals of TMDSC, the melting-recrystallization-remelting phenomena were further verified. In addition, a small endothermic peak was found at the highest melting temperature in the reversing thermogram for TT-enriched copolyesters. It is reasonably to believe that this endotherm is attributed to the melting of the crystals that are formed in regime I during the heating scan. The cocrystallization of the PET/PTT copolyesters was studied using DSC and WAXD. A clear endothermic peak in the DSC thermogram was detected over the entire range of copolymer composition. A minimum melting temperature was found for the copolyester with 50% ET. The WAXD patterns of these copolymers can be divided into two groups with sharp diffraction peaks, i.e., PET type and PTT type crystals. The transition of crystal structure between PET type and PTT type occurred around the eutectic composition (50 % ET and TT), determined from the variation of the melting temperature with the composition. In addition, the fiber diagram and the WAXD pattern of the copolyester with the eutectic composition showed a different crystalline structure. These results indicated that the cocrystallization behavior of the PET/PTT copolyesters was isodimorphic.
50

Thermal Analysis Of Eutectic Modified And Grain Refined Aluminum-silicon Alloys

Islamoglu, Erol Hamza 01 September 2005 (has links) (PDF)
A series of AlSi9Mg alloys were prepared and tested to reveal the effect of addition sequence and timing of grain refiner and eutectic modifier. AlSr10 master alloy was used as an modification reagent, and also for grain refiner AlTi5B master alloy was used. The depression at the eutectic temperature due to the addition of modifier and decrease in the amount of undercooling at the liquidus due to the presence of grain refiner were examined by the cooling curves which were obtained by the Alu-Therm instrument, which is the aluminum thermal analyzer of the Heraeus Electro-Nite. The alloys that were both modified and grain refined were subsequently poured as tensile test specimen shapes in permanent die casting mould for four times at 60 minutes time intervals, meanwhile thermal analysis of the alloys were also made. In this work the effect of grain refinement and modification agent, also the determination of the optimum time to pour after adding these agents were studied by aluminum thermal analyzer. The parameters obtained from this analyzer are compared with the microstructures / to see the effect of these agents on mechanical properties, hardness, tensile strength and percent elongation values were investigated. In this study the possibility of predicting the mechanical properties prior to casting by thermal analysis method was examined by regression analysis method. By this method relationship between thermal analysis parameters and mechanical properties was established.

Page generated in 0.0766 seconds