• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 329
  • 31
  • 1
  • Tagged with
  • 391
  • 391
  • 243
  • 121
  • 94
  • 90
  • 59
  • 42
  • 36
  • 33
  • 33
  • 32
  • 31
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Ecosystem Impacts of Consumer Evolution: Intraspecific Variation in the Elemental Phenotype of Aquatic Consumers

January 2017 (has links)
abstract: Primary production in aquatic ecosystems is often limited by the availability of nitrogen (N) and/or phosphorus (P). Animals can substantially alter the relative availability of these nutrients by storing and recycling them in differential ratios. Variation in these stoichiometric traits, i.e., the elemental phenotype, within a species can link organismal evolution to ecosystem function. I examined the drivers of intraspecific variation in the elemental phenotype of aquatic consumers to test for the generality of these effects. Over a thermal gradient in Panamá, I found that average specific growth grate and body P content of the mayfly Thraulodes increased with environmental temperature, but that these patterns were due to site-specific differences rather than the direct effects of warmer temperature. In a meta-analysis of published studies, I found that in fishes intraspecific variation in dietary N:P ratio had a significant effect on excretion N:P ratio, but only when accounting for consumption. I tested for the effects of variation in consumption on excretion N:P ratio among populations of the fish Gambusia marshi in the Cuatro Ciénegas basin in Coahuila, Mexico. G. marshi inhabits warm groundwater-fed springs where it often co-occurs with predatory fishes and cool runoff-dominated wetlands which lack predators. Using stoichiometric models, I generated predictions for how variation in environmental temperature and predation pressure would affect the N:P ratio recycled by fishes. Adult female G. marshi excretion N:P ratio was higher in runoff-dominated sites, which was consistent with predators driving increased consumption rates by G. marshi. This result was supported by a diet ration manipulation experiment in which G. marshi raised on an ad libitum diet excreted N:P at a lower ratio than fish raised on a restricted diet ration. To further support the impacts of predation on phenotypic diversification in G. marshi, I examined how body morphology varied among habitats and among closely related species. Both among and within species, predation had stronger effects on morphology than the physical environment. Overall, these results suggest that predation, not temperature, has strong effects on these phenotypic traits of aquatic consumers which can alter their role in ecosystem nutrient cycling through variation in consumption rates. / Dissertation/Thesis / Doctoral Dissertation Biology 2017
202

Development, Evolution, and Teeth: How We Came to Explain The Morphological Evolution of the Mammalian Dentition

January 2017 (has links)
abstract: This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological research programs, i.e. research programs that explore the process of changing form. Subsequently, the way in which investigators have pursued and understood morphology has witnessed significant changes from the 19th century to modern day research. In order to trace this shifting history of morphology, I have selected a particular organ, teeth, and traced a tendril of research on the dentition beginning in the late 19th century and ending at the year 2000. But even focusing on teeth would be impossible; the scope of research on this organ is far too vast. Instead, I narrow this dissertation to investigation of research on a particular problem: explaining mammalian tooth morphology. How researchers have investigated mammalian tooth morphology and what counts as an explanation changed dramatically during this period. / Dissertation/Thesis / Doctoral Dissertation Biology 2017
203

Biomechanical Constraints on Molar Emergence in Primates

January 2017 (has links)
abstract: Across primates, molar-emergence age is strongly correlated to life-history variables, such as age-at-first-reproduction and longevity. This relationship allows for the reconstruction of life-history parameters in fossil primates. The mechanism responsible for modulating molar-emergence age is unknown, however. This dissertation uses a biomechanical model that accurately predicts the position of molars in adults to determine whether molar emergence is constrained by chewing biomechanics throughout ontogeny. A key aspect of chewing system configuration in adults is the position of molars: the distal-most molar is constrained to avoid tensile forces at the temporomandibular joint (TMJ). Using three-dimensional data from growth samples of 1258 skulls, representing 21 primate species, this research tested the hypothesis that the location and timing of molar emergence is constrained to avoid high and potentially dangerous tensile forces at the TMJ throughout growth. Results indicate that molars emerge in a predictable position to safeguard the TMJ during chewing. Factors related to the size of the buffer zone, a safety feature that creates greater stability at the TMJ during biting, account for a large portion of both ontogenetic and interspecific variation in the position of emergence. Furthermore, the rate at which space is made available in the jaws and the duration of jaw growth both determine the timing of molar emergence. Overall, this dissertation provides a mechanical and developmental model for explaining temporal and spatial variation in molar emergence and a framework for understanding how variation in the timing of molar emergence has evolved among primates. The findings suggest that life history is related to ages at molar emergence through its influence on the rate and duration of jaw growth. This dissertation provides support for the functionally integrated nature of craniofacial growth and has implications for the study of primate life history evolution and masticatory morphology in the fossil record. / Dissertation/Thesis / Doctoral Dissertation Anthropology 2017
204

Geographical Variation in Social Structure, Morphology, and Genetics of the New World Honey Ant Myrmecocystus mendax

January 2018 (has links)
abstract: Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation that is consistent with primary polygyny. In contrast, similar analyses suggest that colonies in the Chiricahua Mountains of southeastern Arizona are primarily monogynous. These interpretations are consistent with field and laboratory observations. Whereas cooperative colony founding was observed frequently among groups of Sierra Ancha foundresses, founding in the Chiricahua population was restricted to individual foundresses. Furthermore, Sierra Ancha foundresses successfully established incipient laboratory colonies without undergoing queen culling following emergence of the first workers. Multi-queen laboratory Sierra Ancha colonies also produced more workers and repletes than haplometrotic colonies, and when brood raiding was induced between colonies, queens of those with more workers had a higher survival probability. Microsatellite analyses of additional locations within the M. mendax range suggest that polygyny is also present in some other populations, especially in central-northern Arizona, albeit at lower frequencies than that in the Sierra Anchas. In addition, analyses of multiple types of genetic data, including microsatellites, the mitochondrial barcoding region, and over 2000 nuclear ultra-conserved elements indicate that M. mendax populations within the southwestern U.S. and northwestern Mexico are geographically structured, with strong support for the existence of two or more divergent clades as well as isolation-by-distance within clades. This structure is further shown to correlate with variation in queen number and hair length, a diagnostic taxonomic feature used to distinguish honey ant species. Together, these findings suggest that regional ecological pressures (e.g. colony density , climate) may have acted on colony founding and social strategy to select for increasing workforce size and, along with genetic drift, have driven geographically isolated M. mendax populations to differentiate genetically and morphologically. The presence of colony fusion in the laboratory and life history traits in honey ant that are influenced by colony size, including repletism, brood raiding, and tournament, support this evolutionary scenario. / Dissertation/Thesis / Doctoral Dissertation Biology 2018
205

The Evolution of Hummingbird Coloration and Courtship Displays

January 2018 (has links)
abstract: Animals have evolved a diversity of signaling traits, and in some species, they co-occur and are used simultaneously to communicate. Although much work has been done to understand why animals possess multiple signals, studies do not typically address the role of inter-signal interactions, which may vary intra- and inter-specifically and help drive the evolutionary diversity in signals. For my dissertation, I tested how angle-dependent structural coloration, courtship displays, and the display environment interact and co-evolved in hummingbird species from the “bee” tribe (Mellisugini). Most “bee” hummingbird species possess an angle-dependent structurally colored throat patch and stereotyped courtship (shuttle) display. For 6 U.S. “bee” hummingbird species, I filmed male shuttle displays and mapped out the orientation- and-position-specific movements during the displays. With such display paths, I was able to then recreate each shuttle display in the field by moving plucked feathers from each male in space and time, as if they were naturally displaying, in order to measure each male’s color appearance during their display (i.e. the interactions between male hummingbird plumage, shuttle displays, and environment) from full-spectrum photographs. I tested how these interactions varied intra- and inter-specifically, and which of these originating traits might explain that variation. I first found that the solar-positional environment played a significant role in explaining variation in male color appearance within two species (Selasphorus platycercus and Calypte costae), and that different combinations of color-behavior-environment interactions made some males (in both species) appear bright, colorful, and flashy (i.e. their color appearance changes throughout a display), while other males maintained a consistent (non-flashing) color display. Among species, I found that plumage flashiness positively co-varied with male display behaviors, while another measure of male color appearance (average brightness/colorfulness) co-varied with the feather reflectance characteristics themselves. Additionally, species that had more exaggerated plumage features had less exaggerated shuttle displays. Altogether, my dissertation work illustrates the complexity of multiple signal evolution and how color-behavior-environment interactions are vital to understanding the evolution of colorful and behavioral display traits in animals. / Dissertation/Thesis / Doctoral Dissertation Biology 2018
206

Spatial and temporal patterns of population genetic diversity in the fynbos plant, Leucadendron salignum, in the Cape Floral Region of South Africa

January 2013 (has links)
abstract: The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are. / Dissertation/Thesis / Ph.D. Biology 2013
207

The Genetics of Speciation in the Parasitoid Wasp, Nasonia

January 2013 (has links)
abstract: Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation. / Dissertation/Thesis / All supplementary files for Joshua D. Gibson Dissertation / Ph.D. Biology 2013
208

Ambient Light Environment and the Evolution of Brightness, Chroma, and Perceived Chromaticity in the Warning Signals of Butterflies

January 2013 (has links)
abstract: ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals. / Dissertation/Thesis / M.S. Biology 2013
209

HIV Evolution: Biogeography and Intra-Individual Dynamics

January 2013 (has links)
abstract: The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional Analysis: The role of Haiti in the subtype B pandemic has been hotly debated for years; while there have been many studies, up to this point, no one has incorporated the well-known mechanism of retroviral recombination into their biological model. Prior to the use of recombination detection, multiple analyses produced trees where subtype B appears to have first entered Haiti, followed by a jump into the rest of the world. The results presented here contest the Haiti-first theory of the pandemic and instead suggest simultaneous entries of subtype B into Haiti and the rest of the world. Longitudinal Analysis: Potential N-linked glycosylation sites (PNGS) are the most evolutionarily dynamic component of one of the most evolutionarily dynamic proteins known to date. While the number of mutations associated with the increase or decrease of PNGS frequency over time is high, there are a set of relatively stable sites that persist within and between longitudinally sampled individuals. Here, I identify the most conserved stable PNGSs and suggest their potential roles in host-virus interplay. In addition, I have identified, for the first time, what may be a gp-120-based environmental preference for N-linked glycosylation sites. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2013
210

Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks

January 2014 (has links)
abstract: In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <&ldquo;>Haeckel's Embryos: Fraud Rediscovered,<&rdquo;> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <&ldquo;>Haeckel's Embryos and Evolution: Setting the Record Straight <&rdquo;> and the New York Times, <&ldquo;>Biology Text Illustrations more Fiction than Fact.<&rdquo;> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly. / Dissertation/Thesis / Ed.D. Biology 2014

Page generated in 0.0996 seconds