Spelling suggestions: "subject:"exciton""
1 |
Theory of Propagation and Manipulation of Excitons in GaAs StructuresGu, Baijie January 2012 (has links)
This dissertation presents research on the propagation and manipulation of excitons in GaAs. There are three main aspects to be addressed. In the first part, we provide a comprehensive understanding of the slow- and fast-light propagation based on excitonic resonances. Propagation (or transit) times of optical pulses through a medium near an absorptive resonance with and without spatial dispersion are studied and contrasted. We show that, when the broadening of the resonance (i.e., dephasing rate) is below a critical value, a frequency range exists near resonance where the transit times are determined by interference between co-propagating exciton-polaritons and deviate strongly from expectations based on the group velocities of the individual exciton-polariton branches. Our theory puts the well-known slow- and fast-light effects in systems without spatial dispersion into a broader context by interpreting them as a limiting case of systems with spatial dispersion. An important ingredient of the exciton theory is the light-matter coupling that can be expressed either in terms of the dipole or the momentum matrix elements. We re-examine the validity of a frequently used relation between the interband momentum and dipole matrix elements ('p-r relation') in semiconductors. An additional correction term was obtained when we applied the 'p-r relation' to finite-volume crystals treated with periodic boundary conditions. The correction term does not vanish in the limit of infinite volume. We illustrate this with numerical examples for bulk GaAs and GaAs superlattices. For bulk GaAs, the correction term is found to be always important; while for a GaAs superlattice, the importance of the correction term for the transition depends strongly on the origin of the unit cell.As an example for manipulation of excitons, we consider mechanical deformations of GaAs nanomembranes. The nanomembranes with lateral sizes much larger than their thicknesses exhibit great flexibility in non-planar deformations and thus promise applications in flexible electronic and photonic devices. These non-planar deformations do not fit in the well-established theory for planar deformations induced by lattice mismatch. Our theory relates the general mechanical deformations (planar or non-planar) of nanomembranes to their excitonic spectra, and is numerically evaluated within the average-strain approximation.
|
2 |
Action d'un champ magnétique sur les trions excitoniques dans les puits quantiques de semi-conducteursMoradi, Aali. Stebe, Bernard. January 2001 (has links) (PDF)
Thèse de doctorat : Physique. Physique du solide : Metz : 2001. / Thèse : 2001METZ022S. Bibliogr. p.132-137.
|
3 |
Excitons indirects dans les puits quantiques de la grande bande interdite / Indirect excitons in wide bandgap semiconductor quantum wellsFedichkin, Fedor 15 December 2016 (has links)
Cette thèse est consacrée à l'étude expérimentale des excitons dans des puitsquantiques polaires fabriqués à partir de semi-conducteurs à large bande interdite. En raison de la structure de ces matériaux à cristaux wurtzite, les électrons et les trous sont séparés le long de l'axe de croissance du puits quantique, de sorte que les excitons peuvent être considérés comme des excitons indirects (IX) : ils forment une famille de quasi-particules bosoniques à longue durée de vie, dont le moment dipolaire est orienté selon l'axe de croissance du puits. Les IX sont considérés comme un système modéle pour l'étude des états collectifs dans les gaz quantiques bosoniques. Ils sont aussi prometteurs pour le développement de dispositifs excitoniques. Leur longue durée de vie, leur répulsion dipolaire, permettent aux IXs de se déplacer sur de grandes distances avant de se recombiner, ce qui offre la possibilité d'étudier le transport d'exciton par imagerie optique. Dans cette thèse, nous abordons le transport des IXs dans des puits quantiques de GaN/(Al,Ga)N et de ZnO/(Mg,Zn)O. Ce choix de matériau est motivé par l'énergie de liaison élevée des IXs ainsi obtenue. Elle est suffisamment élevée pour, en thèorie, stabiliser les IXs jusqu'à la température ambiante. Mais ce choix poseaussi un certain nombre de défis expérimentaux, car (i) le temps de vie radiatifdépend fortement de la densité d'excitons, ce qui rend la mesure de la densitéexcitonique très complexe ; (ii) la recombinaison non radiative activée thermiquement supprime le signal de photoluminescence excitonique à température ambiante ; (iii) la propagation excitonique coexiste avec une propagation photonique le long du plan du puit quantique, ce qui complique l'analyse ; (iv) il existe un fort champ électrique le long de l'axe de croissance, et aussi desuctuations dans l'épaisseur du puits quantique, ce qui crée un fort élargissement inhomogène de l'émission excitonique. Nous avons abordé toutes ces questions et nous démontrons dans ce travail que les excitons se propagent effectivement dans le plan du puits quantique. Nous arrivons à cette conclusion en combinant des expériences de micro-photoluminescence en régime continu avec des mesures de spectroscopie résolues en temps, et en comparant nos données expérimentales avec divers modèles numériques basés sur les équations dedérive et de diffusion. Dans du matériau de qualité, des puits GaN/(Al,Ga)N obtenus sur substrats GaN, nous avons observé une propagation à temprature ambiante sur plus de 10 µm, et sur plus de 20 µm à 4 K. Nos résultats suggérent que la propagation des excitons sous excitation à onde continue est facilitée par l'écrantage du désordre par les excitons. Néanmoins, la propagation excitonique est encore limitée par la diffusion des excitons sur les défautsiii plutôt que par la diffusion exciton-exciton. Ainsi, l'amélioration de la qualité des interfaces du puits quantique pourrait encore permettre une propagation excitonique sur de plus grandes distances. / This thesis is devoted to experimental study of excitons in polar quantum wells(QWs) based on wide band-gap semiconductors. Due to wurtzite crystal structureof these materials, electron and hole are separated in the QW growth axis, sothat excitons can be considered as indirect excitons (IX), a family of long-living bosonic quasi-particles with dipole moment oriented along the QW growth axis. IX are considered as a model system for studies of collective states in quantum gases of bosons, and are also promising for the development of excitonic circuit devices. Long lifetimes and dipole repulsion allow IXs to travel over large distances before recombination providing the opportunity to study exciton transport by optical imaging. In this thesis we address IX transport in a set of GaN/(Al,Ga)N and ZnO/(Mg,Zn)O QWs. This choice of IX is motivated by high binding energy, and potential stability up to room temperature, but present a number of experimental challenges, including (i) dramatic dependence of the exciton radiative lifetime on the exciton density that makes exciton density measurement very complex, (ii) thermally activated nonradiative recombination that quenches exciton PL at room temperature,(iii) coexistence of photon propagation with exciton propagation along the QW plane, and strong inhomogeneous broadening of the exciton emission due to strong built-in electric field and the presence of both monolayeructuations of the QW thickness and the fluctuations of alloy composition in the barriers. We have addressed all these issues and demonstrated exciton propagation by combining continuous wave µ-photoluminescence and time-resolved spectroscopy measurements, supplemented by modelling of the exciton transport within drift-diffusion formalism. In the best quality GaN/(Al,Ga)N QWs grown on free-standing GaN substrates we achieved room-temperature propagation over ~10 µm and up to 20 µm at 4 K. Our results suggest that propagation of excitons under continuous-wave excitation is assisted by effcient screening of the in-plane disorder. Nevertheless, exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scatteringso that improving interface quality can boost exciton transport further.
|
4 |
Cohérence quantique et superfluidité d'un gaz d'excitons piégés / Quantum coherence and superfluidity of a trapped excitons gasAnankine, Romain 16 June 2017 (has links)
Les excitons semiconducteurs sont des quasi-particules bosoniques composées d’un électron et d’un trou appariés par attraction coulombienne. Ils peuvent subir une condensation de Bose-Einstein dont l’originalité réside dans le fait que les excitons participant au condensat se distribuent de façon cohérente entre quatre états de « spin » : les deux états de plus basse énergie qui sont « noirs » puisqu’ils ne sont pas couplés à la lumière, et les deux états « brillants », à plus haute énergie, permettant de voir les signatures quantiques via une émission cohérente de photons. La condensation des excitons doit donc conduire à une occupation macroscopique des états noirs quand la température est inférieure à 1 K, et a été expérimentalement démontrée en 2015 dans la thèse de M. Beian. Cette thèse montre, cette fois-ci, la participation des excitons brillants à la condensation de Bose-Einstein. En étudiant un gaz bi-dimensionnel d’excitons confinés dans un piège électrostatique, nous montrons, dans le régime dilué, qu’émerge un ordre à longue portée d’origine quantique, avec un accroissement de la cohérence temporelle de la photoluminescence émise par les excitons brillants, en dessous d’une température critique commune d’environ 1 K. La présence de vortex quantiques, signalés par des défauts de densité et par l’apparition de singularités de phase dans les figures d’interférences spatiales, apporte la preuve que 85% des excitons participent à la formation d’un superfluide à quatre composantes, avec une population macroscopique d’excitons noirs couplée de façon cohérente à une fraction d’excitons brillants condensés. / Semiconductor excitons are bosonic quasi-particles compound of an electron and a hole bound by Coulomb attraction. They can undergo Bose-Einstein condensation in a very original fashion: excitons are distributed among four "spin" states. The lowest energy states are "dark" because optically inactive while at a higher energy, two "bright" states are coupled to the photon field. Below sub-kelvin temperatures, condensation of excitons leads to a macroscopic population of the dark states, as demonstrated in M. Beian's thesis in 2015. This dark condensate is coherently coupled with a small fraction of bright excitons whose their weak photoluminescence emitted allows to probe signatures for quantum coherence. In this thesis, we show the contribution of bright excitons to the Bose-Einstein condensation. We study a 2D dilute gas of excitons confined in a electrostatic trap where we reveal, below a critical temperature of about 1 K, a quantum long-range order with an increased temporal coherence of the photoluminescence emitted by bright excitons. The appearance of quantised vortices, signalled by density defects and phase singularities in spatial interferences patterns, gives us the demonstration that 85% of the trapped excitons participate in the formation of a four-component superfluid where a macroscopic population of dark excitons is coherently coupled with a fraction of condensed bright excitons.
|
5 |
Device physics of conjugated polymer LEDsGrice, Alan William January 1998 (has links)
No description available.
|
6 |
Optical studies of tunnelling in semiconductor quantum well systemsStone, Robert John January 1997 (has links)
No description available.
|
7 |
Aspects of low dimensional diluted semimagnetic structuresPiorek, Thomas January 1996 (has links)
No description available.
|
8 |
Couplage fort entre plasmons de surface et excitons de semiconducteur organiqueBonnand, Clément Bellessa, Joël January 2006 (has links) (PDF)
Reproduction de : Thèse de doctorat : Physique : Lyon 1 : 2006. / Titre provenant de l'écran titre. 131 réf. bibliogr.
|
9 |
Photoexcitation Mechanisms of the Green Defect Emission from Zinc and Sulfur Doped ZnO Phosphor Powders Through Measurement and Analysis of Optical Properties and CharacterizationSimmons, Jay Gould January 2013 (has links)
<p>The mechanism for defect related green emission from zinc (ZnO:Zn) and sulfur doped ZnO (ZnO:S) are determined through optical characterization of the green and UV emission bands. ZnO:Zn is prepared by heating ZnO in a slightly reducing atmosphere for 1 hour and sulfur doped ZnO is similarly obtained with a small amount of sulfur added. Photoluminescence (PL), photoluminescence excitation spectra (PLE), and quantum efficiency measurements are analyzed to determine the mechanism of the green defect emission. Low temperature PL and PLE measurements are used to assign activation energies to the emission processes and connect them with donor bound excitons in ZnO. It was determined that both ZnO:Zn and ZnO:S have a similar green emission mechanism. This common mechanism involves the formation of donor bound excitons <italic>I<sub>3a</sub></italic> and <italic>I<sub>9</sub></italic>, which were determined to be the mediators between photoexcitation of excitons and the transfer of energy to the defect responsible for green emission. The most efficient excitation processes for both the green and band edge emissions at low temperatures is through direct excitation of the neutral donor bound exciton <italic>I<sub>9</sub></italic> or by ionizing the neutral donor bound exciton <italic>I<sub>3a</sub></italic>. The ionization of <italic>I<sub>3a</sub></italic> eliminates this exciton localization site and simultaneously creates a bound exciton at <italic>I<sub>9</sub></italic>. The <italic>I<sub>9</sub></italic> bound exciton can then either transfer energy to the defect responsible for the green emission or contribute to the free exciton population through a phonon assisted transition. At room temperature a resonant absorption peak associated with <italic>I<sub>9</sub></italic> is still present in the absorption band for ZnO:Zn suggesting partial localization at <italic>I<sub>3a</sub></italic> and <italic>I<sub>9</sub></italic> of free excitons with low kinetic energy (excitations below the band gap) continues to be the intermediate between excitons and the energy transfer to the green emitting defect. </p><p>In ZnO:S, the addition of sulfur creates ZnS domains within the lattice leading to a type II band alignment at the interface of ZnO and ZnS domains. This band alignment at the interface increases the density of free electrons in ZnO, which may then encounter an ionized <italic>I<sub>3a</sub></italic> site converting it to its neutral form. Increasing the density of free electrons, a result of the type II band alignment, increases the chances of returning an ionized <italic>I<sub>3a</sub></italic> to its neutral form and thus increases the green emission. These results can lead to informed optimization of ZnO:S as a potential white light emitting phosphor.</p> / Dissertation
|
10 |
Terahertz driven intraband dynamics of excitons in nanorodsSy, Fredrik 15 May 2014 (has links)
Quantum dots and nanorods are becoming increasingly important structures due to their potential applications that range from photovoltaic devices to medicine. The majority of the research on carrier dynamics in these structures has been in the optical regime, with little work performed at Terahertz frequencies where excitonic dynamics can be more directly probed. In this work, we examine theoretically the interaction of Terahertz radiation with colloidal CdSe nanorods to determine the dynamics of excitons generated via a short optical pulse. We calculate the energies and wavefunctions for the excitons within the envelope function approximation in the low density limit where there is at most one exciton per nanorod. The linear Terahertz transmittance and absorbance is found for nanorods that are approximately 70 nm in length and 7 nm in diameter and are compared with experimental results that have shown the first observation of intra-excitonic transitions in nanorods. We find absorbance peaks at 8.5 THz and 11 THz that result from polarizations in the longitudinal (rod axis) and transverse directions respectively. Our theoretical results show that the 8.5 THz and 11 Thz peaks are due to 1s-2pz and 1s-2px transitions respectively. The theoretical absorbance spectra is in good agreement with the experimental one and show that only the ground state is significantly populated 1 ps after optical excitation. This provides strong evidence of rapid trapping of excited holes into the ligand used to passivate the nanorods. A full set of dynamical equations were then constructed from Heisenberg's equation of motion, and were used to model the excitonic correlations as a function of time. Transmittance and absorbance were calculated for different nanorod orientations and electric field strengths in both the linear and nonlinear regime. These results were then averaged over nanorod orientation in order to more accurately reflect experimental conditions. Nonlinearity was found to become significant at peak pulse field strengths of 7 kV/cm and greater. Due to two-photon processes, we predict the 2pz-3dz transition that is not observed in the linear regime will be clearly seen in the nonlinear absorbance spectrum. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2014-05-14 23:37:58.604
|
Page generated in 0.0392 seconds