• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 29
  • 25
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 43
  • 30
  • 29
  • 29
  • 27
  • 27
  • 25
  • 23
  • 21
  • 20
  • 17
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Photoconductive properties of conjugated polymers

Halls, Jonathan James Michael January 1997 (has links)
No description available.
52

The magneto-optical properties of semiconductors and the band structure of gallium nitride

Shields, Philip Aldam January 2001 (has links)
No description available.
53

Collective dynamics of excitons and exciton-polaritons in nanoscale heterostructures / Dynamique collective des excitons et exciton-polaritons dans des hétérostructures nanométriques

Visnevski, Dmitri 09 July 2013 (has links)
Dans ma thèse, je discute des phénomènes collectifs dynamiques impliquant des excitons et des exciton-polaritons dans des nanostructures de semiconducteurs. Dans le premier chapitre j’introduis brièvement des éléments de physique des semiconducteurs. Les quatre chapitres suivants sont dédiés à la présentation de résultats originaux. Le chapitre 2 décrit les phénomènes d’interaction cohérente entre phonons et condensats d’exciton. Le chapitre 3 décrit un laser à boite quantique dont l’émission peut être amplifiée par l’excitation par un pulse acoustique. Les chapitres 4 et 5 sont respectivement dédiés à l’étude du phénomène de multistabilité des exciton-polaritons et à l’étude d’un condensat d’excitons indirects. / In my thesis I will discuss some aspects of collective dynamics of excitons and exciton-polaritons in nanoscale heterostructures. In the first Chapter I will make a brief introduction to the modern semiconductor physics and willdescribe the general elements and notions which will be used further. Other four chapters would be devoted to four works in which I participated, notably, in Chapter 2 I will speak about the coherent interactions between phonons and exciton orexciton-polariton condensates, in Chapter 3 I will discuss the quantum dots lasing and its amplification by an acoustic pulse. Chapter 4 and 5 will be devoted respectively to the polariton multistability and to the condensates of indirect excitons.
54

Nanoengineering of organic light-emitting diodes

Lupton, John Mark January 2000 (has links)
No description available.
55

Éxcitons em nanocristais de silício / Excitons in Silicon nanocrystals

Gonzalez, Luis Jose Borrero 22 October 2010 (has links)
As propriedades ópticas de nanocristais de silício (Si-ncs) têm sido extensivamente estudadas após a primeira demonstração em 1990 de fotoluminescência altamente eficiente em silício poroso. Apesar dos progressos no entendimento da natureza da alta eficiência da luminescência dos Si-ncs e da enorme versatilidade para aplicações optoeletrônicas, este campo ainda é um tema de controvérsia devido à complexidade destes materiais. Além disso, as condições de preparação ainda afetam as propriedades de emissão destes materiais que são de fundamental importância para as aplicações tecnológicas. O presente trabalho teve como objetivo o estudo das propriedades óticas dos Si-ncs e entender os processos fotofisicos envolvidos na recombinação radiativa de éxcitons altamente confinados nesse sistema. Si-ncs embebidos em matriz amorfa de SiO2 foram preparados a partir de filmes de oxido de silício SiyO1-y subestequiométricos (y≥1/3) depositados em substratos de quartzo utilizando um sistema deposição CVD na fase estimulada por plasma (electron cyclotron resonance-plasma enhanced chemical vapor deposition ou ECR-PECVD). Esta técnica oferece boa passivação e estabilidade interfacial Si/SiO2. O tratamento térmico a altas temperaturas (900°C≤Ta≤1100°C) promove a precipitação do silício dentro da matriz, favorecendo um processo de nucleação e crescimento dos Si-ncs. Foram realizados tratamentos térmicos nos filmes sob atmosferas de Argônio (Ar) ou (Ar+5%H2) por duas horas. As distintas atmosferas promoveram a passivação de defeitos superficiais, principalmente de ligações pendentes pelo Hidrogênio. As propriedades associadas diretamente à fabricação, tais como estrutura cristalina, morfologia, tamanho e química da superfície dos Si-ncs foram correlacionadas com os processos de emissão envolvendo éxcitons. A caracterização estrutural foi realizada por Raio-x (XRD), Microscopia de Transmissão de Alta Resolução (HRTEM), Retroespalhamento de Rutherford e Espectroscopia Raman. As medidas óticas foram basicamente Absorção, Excitação Seletiva, Fotoluminescência CW (PL) e Fotoluminescência Resolvida no Tempo. Os resultados da caracterização indicaram que efeitos de confinamento quântico e de estados de superfície dominam o processo de recombinação no Si-nc/SiO2. Em conclusão, os resultados obtidos neste trabalho mostram uma interessante e uma nova correlação entre as condições de fabricação da amostra e os processos de recombinação de éxcitons em Si-nc/SiO2. Todos estes resultados desafiam modelos anteriores propostos para explicar as propriedades ópticas do sistema de Si-nc/SiO2 e prevê ajudar na futura aplicação tecnológica dos mesmos. / The optical properties of silicon nanocrystals (Si-nc) have been extensively studied after the first demonstration in 1990 of highly efficient photoluminescence in porous silicon. Despite progress in understanding the nature of high luminescence efficiency of Si-ncs and versatility for optoelectronic applications, this field is still a subject of controversy due to its complexity. Furthermore, the preparation conditions still affect the emission properties of these materials that are of fundamental importance for technological applications. This work aimed to study the optical properties of Si-ncs and to understand the photophysical processes involved in the radiative recombination of excitons strongly confined in this system. Si-ncs embedded in amorphous SiO2 were prepared from silicon oxide films of substoichiometric SiyO1-y (y≥1/3) deposited on quartz substrates using a CVD deposition system in phase stimulated by plasma (electron cyclotron resonance-plasma enhanced chemical vapor deposition ou ECR-PECVD). This technique provides good passivation and Si/SiO2 interfacial stability. The thermal treatment at high temperatures (900°C≤Ta≤1100°C) promotes the precipitation of silicon within the matrix, favoring a process of nucleation and growth of Si-ncs. The thermal treatments were performed in the films under Argon atmosphere (Ar) or (Ar+5%H2) for two hours. The use of different atmospheres allowed the understand of the passivation process of surface defects, particularly of dangling bonds by Hydrogen. The properties directly related to fabrication such as crystalline structure, morphology, size and surface chemistry of Si-ncs were correlated with emission processes involving excitons. The structural characterization was performed by X-Ray Diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Rutherford Backscattering and Raman spectroscopy. The optical measurements were basically Absorption, Selective excitation, CW photoluminescence (PL) and Time Resolved Photoluminescence. The characterization results indicate that both quantum confinement and surface states effects dominate the recombination process in Si-ncs/SiO2. In conclusion, the results obtained in this work show an interesting and a novel correlation between the sample fabrication conditions and the exciton recombination process in Si-ncs/SiO2. All these results challenges previous models proposed to explain the optical properties of Si-nc systems and are expected to help further technological applications of this system.
56

Effets de symétrie sur les propriétés optiques de boîtes quantiques uniques de semiconducteur

Kowalik, Katarzyna 05 September 2007 (has links) (PDF)
Cette thése porte sur l'étude des relations entre la symétrie des boîtes quantiques de semiconducteur auto-assemblées III-V et II-VI (QDs, anglais quantum dots) et leurs propriétés optiques. L' intrication de polarisation d'une paire de photon émise dans la cascade biexciton-exciton d'une boîte quantique d'InGaAs a été récemment démontrée par deux groupes [1, 2]. En principe, l'éclatement de structure fine (FSS, anglais fine structure splitting) du niveau fondamental d'un exciton neutre, qui caractérise l'anisotropie native des boîtes quantiques, doit être inférieur à la largeur des raies radiatives. Dans le cas contraire, la collection de photons intriquées nécessite une post-sélection draconienne, qui réduit fortement l'effcacité d'une telle source [2]. Une technique fiable permettant un tel contrôle de la structure fine est fortement souhaitable afin d'envisager de futures applications des boîtes quantiques comme source des photons intriqués en polarisation. Dans ce but, l'application d'une perturbation externe semble être une technique très prometteuse. Différentes stratégies pour lutter contre cette levée de dégénérescence ont été abordées par divers groupes de recherche ces derniµeres années : (i) effectuer un traitement post-croissance tel qu'un recuit pour modifier les propriétés structurale des boîtes [3, 4]), (ii) appliquer une perturbation externe comme par exemple une contrainte uni-axiale [5], en vue de compenser l'anisotropie, (iii) chercher à produire une dégénérescence fortuite en appliquant un champ magnétique transverse [6]. C'est cette dernière méthode qui en 2006 a donné les résultats les plus probants, en démontrant le contrôle du degré d'intrication des photons émis par une boîte quantique unique. C'est donc dans un contexte d'intense compétition internationale que nos propres travaux ont été menés. Nous nous sommes concentrés sur l'exploration de deux effets: (i) la déformation par un champ électrique externe de la fonction d'onde des excitons de boîtes quantique [7], (ii) le déplacement Zeeman des niveaux excitoniques par un champ magnétique transverse pouvant conduire µa une dégénérescence accidentelle des deux niveaux d'exciton [8].<br />Le premier Chapitre 1 (Introduction: quantum dots for entangled photons emission) sert à introduire brièvement les propriétés fondamentales des boîtes quantiques de semiconducteur. Nous donnerons une description simple de leurs états électroniques, suffisantes pour discuter les propriétés optiques de ces objets et bien comprendre le rôle que joue l'anisotropie des boîtes. En particulier la levée de dégénérescence des niveaux excitoniques sera décrite ainsi que ses conséquences pour l'émission de photons intriqués en polarisation.<br />Dans le Chapitre 2 (Samples and Experimental setups) nous décrirons les échantillons de boîtes quantiques étudiés au cours de cette thèse, à savoir des boîtes InAs/GaAs et CdTe/ZnTe. Nous présenterons les procédés technologiques utilisés pour réaliser des structures à effet de champ en vue de l'application d'un champ électrique. Enfin les différents montages expérimentaux de micro-photoluminescence seront détaillés.<br />Dans la partie suivante (Chapitre 3, Influence of electric field on quantum dots) nous présenterons des résultats de spectroscopie de boîtes quantiques individuelles dans un champ électrique. La levée de dégénérescence des excitons est reliée µa l'interaction anisotrope d'échange entre électron et trou laquelle dépend sensiblement de la forme de la fonction d'onde excitonique. Un champ électrique semble être un bon moyen pour modifier cette dégénérescence et donc éventuellement l'annuler. Le champ est d'abord appliqué dans le plan des boîtes, géométrie qui semble la plus propice à changer la symétrie des fonction d'ondes. Selon la direction du champ par rapport aux axes principaux des boîtes il devrait être possible d'augmenter ou diminuer le FSS. Par la technologie de contacts sur des matériaux d'III-V (structures de diode n-Schottky et Schottky-Schottky) il nous a été possible d'appliquer le champ électrique avec succµes sur des boîes quantiques. Des changements systématiques de l'anisotropie optique de la luminescence étaient obtenus [7]. Ceux-ci sont le fruit de deux effets concurrents : la modification prévue de la symétrie des fonction d'ondes et la modification du recouvrement des fonctions d'onde d'électron et trou. Le dernier effet devrait toujours mener a la réduction de l'interaction d'échange. Afin d'estimer sa valeur nous avons exécuté des expériences dans une configuration de champ électrique parallèle à la direction<br />de croissance des QDs. Dans cette configuration le champ ne semble pas devoir modifier significativement la symétrie des fonctions d'ondes pour un électron et un trou. Les changements de structure fine devraient être provoqués principalement par la séparation spatiale des porteurs. Les variations observées dans le champ vertical étaient plus petites que pour la configuration dans le plan, ce qui confirme notre hypothµese. Mais pour autant, l'asymétrie observée en renversant le sens du champ électrique indique aussi que le champ vertical produit un effet sur la symétrie des excitons [9]. Ceci se comprend assez bien car le champ électrique vertical déplace les porteurs par rapport aux régions de forte anisotropie des boîtes quantiques situées au dessus et au dessous du coeur de la boîte.<br />Les changements de FSS dans le champ horizontal qui on été obtenus, sont relativement grands (comparable au décalage Stark), mais l'utilité de cette méthode reste limitée par la diminution d'intensité (due à la séparation spatiale des porteurs, et à leur ionisation hors des boîtes par échappement tunnel). Toutefois, l'annulation complète de la structure vine a été observée sur quelques boîtes quantiques possédant une anisotropie initiale faible. <br />D'autres mesures sur les complexes excitoniques tels que biexciton et trions nous ont permis de déterminer la position spatiale relative d'un électron et d'un trou à l'intérieur d'une boîte [9]. Les études de l'influence du champ électrique sur les propriétés optiques de boîtes II-VI ont été limitées à des observations liées aux fluctuations de champs électriques locaux, responsables de variations noncontrôlées de la structure fine excitonique [10].<br />Le Chapitre 4 (Influence of magnetic field on quantum dots) est consacré à la description de l'influence du champ magnétique externe sur l'émission des boîtes. Pour des boîtes II-VI, la technologie de fabrication d'électrodes n'étant pas disponible, l'application d'un champ magnétique mérite vraiment d'être explorer. Nous avons expérimentalement observé que pour des boîtes CdTe/ZnTe les changements de FSS dépendent de l'amplitude et de la direction du champ magnétique appliqué. Pour le champ appliqué oblique aux axes principaux d'une boîte nous avons noté une rotation de la polarisation d'émission. L'explication de ces résultats repose sur le couplage très particulier entre les états "brillants" et les états "noirs" dans la configuration de champ transverse, comme le montre un modèle théorique de l'interaction Zeeman dans cette configuration. Il faut pour cela introduire un facteur de Landé transverse non nul pour les trous, ce qui suggère d'inclure le mélange de bande entre trous lourds et trous légers. Nous avons obtenu une bonne concordance entre les résultats expérimentaux et la théorie [8]: qualitative en ce qui concerne la rotation de la polarisation et de l'intensité des raies de luminescence, et quantitative pour l'évolution des niveaux d'énergie et de la structure fine. Très important d'un point de vue théorique, ont été prises en considération non seulement la direction du champ par rapport aux axes des boîtes, mais également par rapport aux axes du cristal. Le formalisme théorique était nécessaire pour comprendre comment le champ magnétique peut modifier la dégénérescence du spin dans certains cas seulement, et pour expliquer le rôle de l'anisotropie du facteur g transverse des états de trou. Les mesures dans le champ longitudinal ont quant-à elles fourni des informations sur le facteur g longitudinal des excitons. Elles montrent la gamme de champ pour laquelle l'anisotropie de QD devient négligeable par rapport a l'énergie Zeeman, conditions dans lesquelles on obtient l'émission des états propres bien polarisés circulairement.<br />Les études de la rotation du spin de l'exciton considéré comme un système a deux niveaux sont présentées dans le Chapitre 5 (Towards entanglement) dans l'optique principale d'étudier sa cohérence quantique. En premier lieu, nous montrons la disparition de cette précession quand l'éclatement de structure fine est annulée grâce µa un champ électrique: cela se manifeste par une résonance de l'orientation optique du spin de l'exciton sous excitation quasi-résonnante. La largeur de cette résonance permet de remonter de manière très originale à la largeur de raie homogène de la boîte quantique. Réciproquement, on observe que pour des boîtes quantiques avec une forte levée de dégénérescence, on peut réaliser l'alignement optique des excitons par une excitation résonnante (assistée par un phonon LO) polarisée linéairement et parallèlement aux axes de la boîte quantique. De manière plus générale, en fixant la polarisation de l'excitation et en variant la base de détection de la polarisation de la luminescence, nous mettons en évidence de forts effets de conversion de la polarisation (circulaire en linéaire et réciproquement) provoquées par la précession du spin de l'exciton dans le champ magnétique effectif (champ externe + interaction d'échange anisotrope). Ces effets sont la preuve que l'exciton garde parfaitement sa cohérence quantique aux échelles de temps de la luminescence. Tous les résultats présentés sont en bon accord avec une description théorique basée sur le formalisme de la matrice densité. <br />Le dernier Chapitre 6 (Conclusions) présente un sommaire des résultats obtenus. Les études expérimentales et modélisations théoriques confirment que les perturbations externes, comme le champ électrique et magnétique, peuvent être utilisées pour modifier la structure des niveaux excitoniques des boîtes afin de contrôler leurs propriétés optiques. Les études détaillées de la direction de perturbation par rapport aux axes de l'anisotropie nous ont permis de comprendre les mécanismes de l'influence de ces champs sur les niveaux excitoniques. Le contrôle de la structure fine donne une chance d'augmenter la symétrie pour améliorer le degré d'intrication des pairs de photons corrélés émis par un biexciton.<br /><br />[1] R. J. Young et al,. New J. Phys., 8:29, 2006.<br />[2] N. Akopian et al., Phys. Rev. Lett., 96:130501, 2006.<br />[3] R. J. Young et al., Phys. Rev. B, 72:113305, 2005.<br />[4] A. I. Tartakovskii et al., Phys. Rev. B, 70:193303, 2004.<br />[5] S. Seidl et al., Appl. Phys. Lett., 88:203113, 2006.<br />[6] R. M. Stevenson et al., Phys. Rev. B, 73:033306, 2006.<br />[7] K. Kowalik et al., Appl. Phys. Lett., 86:041907, 2005.<br />[8] K. Kowalik et al., Phys. Rev. B, 75:195340, 2007.<br />[9] K. Kowalik et al., Phys. Stat. Sol. (c), 3:3890, 2006.<br />[10] K. Kowalik et al., Phys. Stat. Sol. (c), 3:865, 2006.<br />[11] A. Kudelski et al., J. Lumin., 112:127, 2005.
57

Nature du désordre et propriétés optiques des excitons dans les fils quantiques semiconducteurs : de la boîte au fil

Guillet, Thierry 20 June 2002 (has links) (PDF)
L'imagerie des propriétés spectroscopiques locales, par microphotoluminescence, nous a permis de comprendre et d'analyser les propriétés de localisation dans les fils quantiques semiconducteurs gravés en V, et d'identifier les causes structurales de désordre. Nous avons ainsi mis en évidence les différences entre deux générations de fils quantiques. Dans la première, la rugosité des hétéro-interfaces impliquées dans le confinement des porteurs est importante et donne lieu à la localisation des excitons; le fil quantique, dit en "régime 0D", se comporte comme une collection de boîtes quantiques. Dans la deuxième génération, les fluctuations des hétéro-interfaces sont beaucoup plus rares (2 par µm dans les meilleurs échantillons) et les excitons sont délocalisés sur plusieurs centaines de nanomètres. Chaque îlot peut alors être considéré comme une portion de fil quantique, justifiant l'appellation de "régime 1D". Les propriétés électroniques des fils quantiques ont été étudiées en microluminescence sur une boîte quantique ou un îlot unique, et ont été corrélées à leurs propriétés structurales. Cette approche "nano-objet individuel" nous a donné accès aux propriétés intrinsèques de ces objets, en nous affranchissant de l'élargissement inhomogène des résultats habituellement obtenus sur une population macroscopique. Dans les fils quantiques en régime 0D, la structure fine du doublet radiatif de l'exciton localisé dans les boîtes quantiques a été mise en évidence expérimentalement et reliée à l'interaction Coulombienne d'échange. L'évolution en température des spectres de microluminescence a été interprétée comme l'établissement du couplage fort entre excitons et phonons acoustiques : le pic zéro phonon observé à basse température disparaît dès 30 K au profit d'une raie plus large de luminescence assistée par les processus d'émission et d'absorption de phonons. Dans les fils quantiques en régime 1D, nous avons montré que les excitons délocalisés dans les îlots sont sensibles au désordre résiduel, principalement dû à la présence de champs piézoélectriques internes. La théorie de l'exciton a été reprise dans le cas des fils quantiques, dont la singularité nécessite une grande rigueur dans la résolution de l'hamiltonien de l'atome d'hydrogène à 1D. Le temps de vie radiatif des excitons a été mesuré et suit à basse température une loi en sqrt(T), prouvant que les excitons de bas de bande sont localement à l'équilibre thermique et que leur densité est en 1/sqrt(E) à l'échelle de kT, comme attendu pour un système unidimensionnel. Nous avons enfin mis en évidence la transition de Mott entre un gaz dilué d'excitons en interaction Coulombienne et un plasma dense d'électrons et de trous lorsque la densité de porteurs photocréés est augmentée, et nous avons caractérisé ces différents régimes de densité. La formation de biexcitons dans le gaz dilué d'excitons a en particulier été confirmée.
58

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
<p>In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.</p><p>We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.</p>
59

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate. We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.
60

Exciton-plasmon interactions in metal-semiconductor nanostructures

Hellström, Staffan January 2012 (has links)
Semiconductor quantum dots and metal nanoparticles feature very strong light-matter interactions, which has led to their use in many photonic applications such as photodetectors, biosensors, components for telecommunications etc.Under illumination both structures exhibit collective electron-photon resonances, described in the frameworks of quasiparticles as exciton-polaritons for semiconductors and surface plasmon-polaritons for metals.To date these two approaches to controlling light interactions have usually been treated separately, with just a few simple attempts to consider exciton-plasmon interactions in a system consisting of both semiconductor and metal nanostructures.In this work, the exciton-polaritons and surface \\plasmon-polaritons are first considered separately, and then combined using the Finite Difference Time Domain numerical method coupled with a master equation for the exciton-polariton population dynamics.To better understand the properties of excitons and plasmons, each quasiparticle is used to investigate two open questions - the source of the Stokes shift between the absorption and luminescence peaks in quantum dots, and the source of the photocurrent increase in quantum dot infrared photodetectors coated by a thin metal film with holes. The combined numerical method is then used to study a system consisting of multiple metal nanoparticles close to a quantum dot, a system which has been predicted to exhibit quantum dot-induced transparency, but is demonstrated to just have a weak dip in the absorption. / <p>QC 20120417</p>

Page generated in 0.049 seconds