• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 372
  • 125
  • 78
  • 75
  • 75
  • 75
  • 63
  • 62
  • 59
  • 54
  • 51
  • 49
  • 46
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

THE USE AND BEHAVIOR OF SORPTION MEDIA IN MITIGATING EXCESSIVE DISSOLVED PHOSPHORUS IN SURFACE WATERS

Isis Stacanelli Pires Chagas Scott (9733313) 15 December 2020 (has links)
<div>Excessive phosphorus (P) is a threat to water quality and aquatic life, and one of the governing causes of eutrophication in water systems. It has been the object of much research that led to the implementation of P best management practices, aimed at curbing P export from agricultural and urban landscapes. However, these efforts are somewhat insufficient to mitigate and control dissolved P transport, a P pool 100% bioavailable for aquatic biota. Recent developments in nutrient management research highlight the ability of P removal structures to sequester dissolved P from flowing water, e.g., runoff and subsurface drainage, before it reaches water bodies. Phosphorus removal is accomplished through the use of reactive filter media, which are either manufactured, mined, or industrial by-products. These media, also referred to as P sorption materials (PSMs), vary in P removal ability, due to their origin, chemical and physical properties, or the conditions under which they operate. Consequently, there is a need to fully distinguish the characteristics of PSMs and their behavior in P removal structures that result in a superior P removal performance. In this study, six different types of PSMs were characterized according to their chemical and physical nature, and PSM-P interactions. To evaluate the variability of P removal capacity of steel slag, a series of flow-through experiments were conducted, using 18 different samples from different origins and generation processes. Phosphorus removal was evaluated on uncoated and aluminum(Al)-coated steel slag samples under two residence times. After chemically characterizing the samples, we found that, for the uncoated steel slags, electrical conductivity (EC), bulk density, particle density and magnesium (Mg) content could explain around 70% of the variability of P removal. Steel slags showed a high variability in their P removal ability, but such variability could be considerably decreased when coating the slags with Aluminum (Al). The Al-coating also allowed a significantly better P removal performance under shorter residence times. Flow-through experiments were also conducted to evaluate the ability to regenerate the P removal capacity of iron(Fe)- and Al-rich PSMs across two cycles of sorption-desorption with potassium hydroxide (KOH). This study found an average P recovery of 81%, 79% and 7% for Alcan, Biomax and PhosRedeem, Fe/Al-rich PSMs commercialized for contaminant removal. The most effective regeneration treatment was characterized by the largest KOH volume (20 pore volumes) and no recirculation, with up to 100\% reported P recovery, although a more economical/feasible use of 5 pore volumes of 1M KOH with recirculation was also found to perform well. The results suggested that the use of Al/Fe-dominated PSMs in P removal structures can be extended through the demonstrated regeneration technique. Iron-rich PSMs were further evaluated in regards to their behavior under anoxic conditions, a scenario that can be found in P removal structures with bottom-upward flow regimes. To evaluate the interference of redox-induced changes on P removal, PSM samples were incubated in a biogeochemical reactor in the presence of tile drainage water. Measurements of Eh throughout the incubation period indicated that PSMs, similar to soils, developed anoxic conditions. After incubation, the dissolved P concentrations in P-loaded and original PSMs were equally low, demonstrating the stability of P retention of PSMs under anoxic conditions. Additionally, the P removal ability of the original PSMs was not significantly altered by undergoing anoxic conditions, as determined from flow-through experiments following incubation. Anoxic-induced changes did not result in any limitations to the implementation of P removal structures with bottom-upward flow. These studies demonstrated the variability in P removal capacity of PSMs as a function of chemical and physical properties, the dominant P removal mechanism, and the operational characteristics of the P removal structure. The experimental data suggests that P removal structures are an effective and environmentally safe best management practice (BMP) that, in conjunction with traditional BMPs, are critical for the mitigation of dissolved P export to water systems. </div>
102

The Sustainable Manufacturing System Design Decomposition

Onkar V Sonur (9726050) 16 December 2020 (has links)
<div>With the growing importance of the manufacturing sector, there is a tremendous demand for finding innovative ways to design manufacturing systems. Although several design methodologies are available for devising the manufacturing systems, most of the changes do not sustain for a longer period. Numerous elements contribute to issues that impede sustainability in manufacturing industries, such as the common design approach of applying solutions without understanding system requirements and appropriate thinking processes. </div><div>With a Sustainable Manufacturing System Design Decomposition (SMSDD), the precise pitfalls and areas of improvement can be well understood. </div><div>The SMSDD fosters members in the organization to collectively map the customer’s needs, identifying the requirements of the system design and the associated solutions. In this thesis, SMSDD is developed to design manufacturing systems for maximizing the potential of an enterprise to create an efficient and sustainable manufacturing system. </div><div> </div><div>In addition to being able to design new manufacturing systems or to re-design existing manufacturing systems, the SMSDD provides a potent tool to analyze the design of existing manufacturing systems. SMSDD uses the Collective System Design Methodology steps to design a manufacturing system for leading to efficient and sustainable manufacturing system. Therefore, SMSDD can apply to a broad range of manufacturing systems. </div><div><br></div>
103

Transformation of the hyper-arid desert soils in Arequipa Peru during four decades of irrigated agriculture

Lucia De Lourdes Zuniga (9524549) 16 December 2020 (has links)
In Peru, nearly 32 million people rely heavily on human-made coastal irrigation agricultural hubs that rely on water from melting glaciers, snowpack, and rain transported by rivers and canals from high in the Andes. However, Peru’s water resources are in a vulnerable state as climate change has shifted rainfall patterns causing glacier retreat affecting nearly the loss of one-third of the glaciers. In recent decades, an increase and expansion of irrigation projects in Peru require agriculture practices to consider environmental impacts directly. Now is the time to explore the sustainability of the desert agroecosystems and understand how different water management practices influence the supporting soil’s health so decision-makers can plan for future change in water resources and any feedbacks to the productivity of the soils. Over the past 40 years, Peru has led some of the largest scale water management projects on earth to convert infertile coastal desert soils into irrigated agricultural land. Still, these efforts can come at a severe local cost with impacts to groundwater quality, salination of the soil, toxic concentrations of trace metals due to evaporation, and overuse of fertilizer and pesticides. This thesis presents a study to assess how drip irrigation impacts desert soil chemistry within one of Peru’s desert irrigation projects in Arequipa’s southern district. We explored a chronosequence of drip irrigation in vineyards of 9-, 16- and 35- years. Results showed that both soil carbon and salinity accumulated progressively over time but that spatial accumulation patterns were influenced by proximity to the irrigation drip line. By 35 years, salinity levels exceeded what would be tolerances for most crops. Trace metals, such as Mn, Zn, and Ni, increased with time under drip irrigation and have significant relationships with Fe, present in the highest concentrations, seemingly controlling the patterns due to co-precipitation. However, no trace metals were found in quantities that would exceed Peru’s limits for agricultural soils. While drip irrigation is considered a water conservation strategy and widely promoted in the region over other irrigation techniques like high water volume furrow irrigation, its use may accelerate localized negative impacts to surface soil health. These progressive changes highlight the need for effective monitoring and salinity mitigation strategies in the region. This project is part of the bilateral technical program between Purdue University and Universidad Nacional San Agustín (UNSA) called the Arequipa Nexus Institute for Food, Water, Energy, and the Environment.
104

Application of Statistically Optimized Near-field Acoustical Holography (SONAH) in Cylindrical Coordinates to Noise Control of a Bladeless Fan

Weimin Thor (8085548) 05 December 2019 (has links)
Near-field Acoustical Holography is a tool that is conventionally used to visualize sound fields through an inverse process in a three-dimensional space so that either sound field projections or sound source localization can be performed. The visualization is conducted by using sound pressure measurements taken in the near-field region close to the surface of the unknown sound source. Traditional Fourier-based Near-field Acoustical Holography requires a large number of measurement inputs to avoid spatial truncation effects. However, the use of a large number of measurements is usually not feasible since having a large number of microphones is costly, and usually the array is limited in size by the physical environment, thus limiting the practicality of this method. In the present work, because of the desire to reduce the number of microphones required to conduct acoustical holography, a method known as Statistically Optimized Near-field Acoustical Holography initially proposed by Steiner and Hald was analyzed. The main difference between the present work and the concept mentioned by Steiner and Hald is the cylindrical coordinate system employed here for the purpose of experimenting on a bladeless fan, which resembles a cylindrical structure and which could be assumed to be a cylindrical source. The algorithm was first verified <i>via</i> simulations and measurements, and was then applied to experimental data obtained <i>via</i> pressure measurements made with a cylindrical microphone array. Finally, suggestions for noise control strategies for the bladeless fan are described, based on the measurement results.<br>
105

The effect of additional surface coating on the performance of additively manufactured fiber reinforced composite mold

Garam Kim (8997584) 23 June 2020 (has links)
A composite part manufacturing mold was considered one of the most important factors that affected a successful composite part manufacturing process for this research. A highly durable surface was required for the mold to prevent surface damages and increase mold life. A high surface finish quality of the mold improved the surface quality of the composite part and lowered the demolding force. However, the surface of additively manufactured fiber reinforced composite molds usually had lower durability and surface finish quality compared to traditional metal molds. To solve these issues, the author applied an additional coating on top of the additively manufactured fiber reinforced composite mold surface. A thermal analysis of the additively manufactured fiber reinforced composite material and the coating material were performed to select an applicable coating technique and coating material. The thermoset polymer coating with ceramic particles that was applied with a liquid spray coating technique was selected as a coating material. Various surface property tests were performed to evaluate the coated surface compared to the non-coated surface. The additively manufactured fiber reinforced composite test specimen manufacturing process and the coating application process were demonstrated in this study. The surface durability of the test specimens was tested using a surface hardness test and an abrasion resistance test. The surface performance of the test specimens was measured using a surface roughness test and a demolding test. The sustainability of the coating material on the additively manufactured fiber reinforced composite was tested using coefficient of thermal expansion (CTE) test, coating adhesion test, and mold life experiment. In the mold life experiment, the non-coated and coated mold were used for multiple composite part manufacturing processes to investigate how the coating affected the life of the mold. The test results showed that the coated surface had a significantly improved surface abrasion resistance and demolding performance. However, the coating did not significantly improved surface hardness and roughness with the coating. The adhesion strength of the coating was not degraded even there was a coefficient of thermal expansion (CTE) mismatch between the additively manufactured fiber reinforced composite and the coating material. The coated additively manufactured fiber reinforced composite mold was able to be used for multiple autoclave composite part manufacturing cycles. The coating covered most of the small voids on the mold surface and provided a more homogeneous surface compared to the non-coated mold, but the voids which could not be covered with the coating caused a chipped coating issue. Once the chipped coating occurred, the size of chipped coating got larger each time the tool was used for a composite part manufacturing cycle. Although the additional coating provided some improvements for the surface properties, the coating applied in this research could not be an ultimate solution to meet all the surface property requirements for composite part manufacturing mold.
106

INFLUENCE ON BIODIVERSITY ON CANOPY PROCESS IN A HARDWOOD PLANTATION FOREST ECOSYSTEM

Taylor M Nelson (10716447) 28 April 2021 (has links)
Increased biodiversity generally enhances terrestrial ecosystem productivity. While niche-use efficiency is thought to drive the biodiversity-productivity relationship, the mechanisms within niche-use efficiency are not well understood. A potential mechanism for niche-use efficiency is nutrient-use efficiency. To measure nutrient-use efficiency, we calculated nitrogen-resorption efficiencies (NRE) because nitrogen is an important growth limiting nutrient for forest productivity. We used a plantation implemented as a full factorial design that included two levels of competition, implemented as different planting densities (one- and two-meter planting densities), and three diversity levels (monocultures, two-, and three-species plantings) that included three hardwood tree species (northern red oak (<i>Quercus rubra</i>), black cherry (<i>Prunus serotin</i><i>a</i>), and American chestnut (<i>Castanea dentata</i>). For our nitrogen-resorption efficiency data, we found that NRE increased as diversity and planting density decreased, but the magnitude of the response varied among species. This outcome suggests that while increased diversity likely provides a release from intra-specific competition, different combinations of species will play a critical role in shaping biodiversity-productivity relationships. Forest nutrient cycling can also be influenced by herbivory. To address the effects of forest diversity on herbivory rates, we monitored rates of foliar damage along with foliar nitrogen content. To measure foliar nitrogen content, we collected spectral data from early, midseason, and late season foliar samples. To assess foliar damage, we collected and imaged leaves from two canopy positions in order to measure late season foliar area and estimate pre damaged foliar area. We found that diversity and foliar nitrogen content have a positive relationship, and diversity does influence canopy damage but the effects vary among species and density. Upon further analysis, we found that foliar nitrogen content and canopy damage are correlated. Meaning individual trees showed a release from intraspecific competition, which lead to an increase in available nutrients and higher canopy quality, showing that stands with higher canopy quality experienced higher levels of damage.<br>
107

Exploring the interaction between functional carbohydrate polymers and small-molecule active compounds

Jingfan Chen (6369032) 30 April 2021 (has links)
<p>Naturally occurring carbohydrates polymers and their functional derivatives play important roles in the research and technology development in the food, nutrition, and pharmaceutical areas. A major property of these polymeric materials is to associate, enable, enhance, and/or deliver small-molecule active compound such as phytochemicals, nutraceuticals, and active pharmaceutical ingredients (APIs). The goal of this project was to synthesize and characterize phytoglycogen-based materials and study their structure-function relationships in association with selected small-molecule active compounds, including resveratrol, a food-related poorly water-soluble phenolic compound, griseofulvin, an insoluble API, and CCVJ (9-(2-carboxy-2-cyanovinyl) julolidine) a molecular rotor used as a structural probe of polymeric materials. </p><p>In this study, phytoglycogen (PG) was derivatives to phytoglycogen octenyl succinate (PG-OS), hydroxypropyl phytoglycogen (HPP), and octenylsuccinate hydroxypropyl phytoglycogen (OHPP). PG, HPP, and OHPP were evaluated for their efficacy in improving the solubility and Caco-2 permeation of resveratrol and griseofulvin, and using CCVJ, PG-OS was evaluated on its performance at oil-water interface in comparison with OSA-starch, acacia gum, and sodium caseinate. The results showed that: 1) PG, HPP, and OHPP substantially improved the soluble amount and Caco-2 monolayer permeation of resveratrol and griseofulvin, and anti-fungal efficacy of griseofulvin in the aqueous system were significantly enhanced; suggesting that the active ingredients were effective solubilized and released to become bioavailable, 2) among all PG-based biopolymers, OHPP showed superior performance in solubilizing resveratrol and griseofulvin, and 3) in the oil-water two-layer model system, PG-OS, OSA-starch, acacia gum, and sodium caseinate all affected the transferring of CCVJ from oil to aqueous phase, and the effect was monitored and interpreted by the emission spectra of molecular rotor; in the emulsion system, the emission peak wavelength of CCVJ was correlated with the amount of biopolymer adsorbed at the interface of emulsion droplets, and the molecular rotor-based method can be used to characterize the interfacial adsorption of biopolymer at the interface in oil-in-water emulsion.</p><p>This study provides information on the interactions between phytoglycogen-based biopolymers and poorly water-soluble active ingredients, and may potentially supports the study of new functional ingredients interaction with phytoglycogen-based biopolymers in aqueous system. Furthermore, this work allowed us to advance the use of molecular rotor as new analytical tool to study the physicochemical properties of biopolymer.</p>
108

ELECTROCHEMOTHERAPY WITH GALLOFLAVIN FOR EFFECTIVE TRIPLE NEGATIVE BREAST CANCER TREATMENT: AN IN VITRO MODEL STUDY

Pragatheiswar Giri (10731939) 05 May 2021 (has links)
<p>One in eight woman develop breast cancer in the United States of America and is the most common type of cancer in the world. Breast cancer has the highest rate of death compared to any other form of cancer. Triple Negative Breast Cancer (TNBC) is the most lethal type of breast cancer, which is the most fatal of all breast cancer types. TNBC is onerous to treat since it lacks all the three most commonly targeted hormones and receptors. Current patients afflicted with TNBC are treated with platinum core chemotherapeutics, namely Cisplatin. Despite the anticancer effects shown by Cisplatin, TNBC attenuates its effect and develops a resistance eventually, which results in reoccurrence of TNBC after few years. Hence there is a demand for effective and alternative ways to treat TNBC. To inhibit the TNBC cell proliferation, blocking the key glycolytic enzyme Lactase Dehydrogenase B (LDHB) is studied and validated. Galloflavin (GF), a proven LDHB inhibitor is utilized in this series of studies and analysis. In addition, Electrochemotherapy, which involves the application of electrical pulses (EP) were utilized to enhance the uptake of GF. The combination of Electrochemotherapy (ECT) with LDHB is a novel way to treat TNBC to produce an alternative to traditional chemotherapy. EP+GF will be subjected onto TNBC cells at various concentrations and pulse parameters. The purpose of this study is to test the effect of alternative chemotherapeutic drug delivery methods for TNBC patients for decrease in mortality rate and improve quality of life. Results indicate TNBC cell viability is the least for EP+GF treatments and the maximum Reactive Oxygen Species (ROS) levels and a maximum decrease in Glucose and Lactate uptake for EP+GF treatments relative to control. Immunoblotting studies indicate the inhibition of LDHB is the most on EP+GF treatments, indicating that this could be a novel modality to treat TNBC.<br></p>
109

Technology for the Advancement of Die Casting Tooling

Corey Mitchell Vian (11160009) 21 July 2021 (has links)
<p>High pressure die casting is an industrial metal casting process used to manufacture goods for use in many aspects of society. Within this manufacturing process, the tooling is subjected to chemical attack from molten aluminum while also being responsible for heat removal during solidification. The purpose of this study is to develop and test materials that allow the tools to better withstand the chemical attack, and to develop design rules to guide the use of additive manufacturing for improving the heat exchange function of by way of conformal cooling.</p> <p> </p> <p>Within the material studies, a gooseneck with a niobium lining was developed to allow the successful implementation of hot chamber aluminum die casting. In addition, a manufacturing plan is described that will allow the niobium gooseneck design to be easily sourced by die casting companies. The material studies also included dunk testing of several coatings, including a plasma assisted chemical vapor deposition silicon doped diamond like carbon (PACVD Si-DLC). The Si-DLC coating performed the best in the dunk testing as compared to bare and nitrocarburized tool steel, and a number of other coating architectures.</p> <p> </p> Within the study of additively manufactured conformal cooling design, a finite difference model is developed that allows a simulated experiment that produced a number of useful equations that guide the design of die casting tooling. During the development of the models, it was discovered that little is known regarding the friction factors of additively manufactured steel pipes, so a factorial experiment was employed to empirically determine said friction factors. Charts allowing design engineers to quickly determine pressure drops and heat transfer coefficients of conformal cooling designs was produced as well.<br>
110

PREDICTING SITE SUITABILITY FOR KUDZU (PUERARIA MONTANA) IN THE GREAT LAKES BASIN AND SURROUNDING REGION

Ashley M Kovach-Hammons (12462825) 26 April 2022 (has links)
<p> Kudzu (Pueraria montana) is an invasive woody vine widespread throughout the  southeastern United States, with recent studies predicting that its habitat will expand northward.  New occurrences and recent studies using climatic parameters suggest that the Midwestern  region of the United States is at the greatest risk of kudzu invasion. As there have already been  25 reports of kudzu within the Great Lakes basin, and no previous landscape models exist for the  basin, I developed probability models from existing spatial data (land cover, hydrology, geology,  annual precipitation, elevation, aspect, and known kudzu locations) using generalized additive,  bioclimate envelope, and maximum entropy methods. I further expanded each model to include  the basin and a 2.25-degree buffer in order to include 193 reported kudzu sites. For each  predictive model, I determined the area under the curve (AUC) for a receiver operating  characteristic curve (ROC) comparing false positive and false negative rates. I performed field  surveys at eight known sites of kudzu presence in Michigan, Indiana, and Ohio. Each presence  site was paired with a control (known kudzu absence site). I collected environmental data  including canopy cover, volumetric soil moisture, soil pH, litter depth, midstory species diversity  and diameter at breast height (DBH), and overstory basal area. Each environmental measure was  compared between kudzu presence and control survey sites as well as between in-basin and out?of-basin survey sites using a two-way ANOVA. Maximum entropy models produced the highest  AUC in both the basin and buffer models during model development. These models showed that  urban and disturbed habitats resulted in the greatest probability of potential habitat for kudzu. I  found no statistically significant differences in environmental characteristics between kudzu  absent and presence sites or between in- and out-of-basin sites, suggesting kudzu might be  dispersal-limited rather than limited by environmental characteristics. Continuing existing  management and further monitoring of kudzu spread is likely necessary to limit further  introduction and to mitigate spread of kudzu within the Great Lakes region.  </p>

Page generated in 0.3121 seconds