• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 80
  • 19
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 97
  • 75
  • 62
  • 48
  • 35
  • 35
  • 35
  • 31
  • 29
  • 29
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Wallpaper drying solutions : Feasibility study of a low temperature drying process

Gil, Arnaud, Raffier, Alex January 2008 (has links)
The wallpaper company Duro Sweden AB, one of the most important Scandinavian wallpaper manufacturers, wants to decrease its energy use and costs and make its production more environmentally friendly. It implies changes in the key process energy use whom consists mainly by drying process using heat production from oil. The purpose of this project, studied by the consulting company Sweco Theorells AB, is to determine the feasibility of a change in the energy utilisation implemented to the most representative process to propose future solutions’ basis on the future energy question. The company use mainly two kind of energy, electricity with 1055MWh per year and oil with 1985MWh per year. The oil power consumption and cost represent respectively 65% and 73% of the global part. Several proposed changes with better energy efficiency are presented : use of district heating as a heat source, Infrared Drying, combination, etc; but due to the important rebate make by the Swedish government on the oil price, they are not currently viable to achieve. But the constant rise of the oil price could be sooner a strong incentive to make these improvals, strongly environmentaly friendly and power consumption reducer, economicaly viable in the long term.
92

Life Cycle Exergy Analysis of Wind Energy Systems : Assessing and improving life cycle analysis methodology

Davidsson, Simon January 2011 (has links)
Wind power capacity is currently growing fast around the world. At the same time different forms of life cycle analysis are becoming common for measuring the environmental impact of wind energy systems. This thesis identifies several problems with current methods for assessing the environmental impact of wind energy and suggests improvements that will make these assessments more robust. The use of the exergy concept combined with life cycle analysis has been proposed by several researchers over the years. One method that has been described theoretically is life cycle exergy analysis (LCEA). In this thesis, the method of LCEA is evaluated and further developed from earlier theoretical definitions. Both benefits and drawbacks with using exergy based life cycle analysis are found. For some applications the use of exergy can solve many of the issues with current life cycle analysis methods, while other problems still remain. The method of life cycle exergy analysis is used to evaluate the sustainability of an existing wind turbine. The wind turbine assessed appears to be sustainable in the way that it gives back many times more exergy than it uses during the life cycle.
93

Energy And Exergy Analyses Of A High School Heating System

Dilek, Murat 01 April 2007 (has links) (PDF)
This thesis presents energy, exergy and economic analyses of the heating system of an existing building, the Konya Central Informatics Technical High School. The heat requirement for each room of the building is found by calculating heat losses. Radiator lengths that can provide the heat requirements are selected. For the exergy analysis, the system is divided into three parts: Heat generator, radiators and rooms. Comparisons are made according to minimum outdoor temperature, insulation quality of the structural elements, fuel type, heating water temperature and heat generator type (boiler, heat pump, cogeneration unit with heat pump) to see their effects on energy usage, exergy consumption, capital costs and annual operating cost of the system. Results show that the largest heat loss is due to infiltration but it should not be reduced because of the fresh air requirement. Minimum energy usage, exergy consumptions and annual operating cost is achieved by using the cogeneration unit with the heat pump. However, due to high capital cost it has a long payback period (45.3 years). The shortest payback period (3.2 years) is calculated for upgrading the windows to 4 mm double glass panes and 12 mm stagnant air gap.
94

An Analysis On The Utilization Of Energy And Exergy In Turkey A Thesis Submitted To The Graduate School Of Natural And Applied Sciences Of Middle East Technical University By Berkan Acar In Partial Fulfillment Of The Requirements For The Degree

Acar, Berkan 01 September 2008 (has links) (PDF)
Today, energy has become one of the most indispensable necessities in the world. Most of the wars and the disputes between the countries have been arising because of the increasing scarcity of energy resources. Therefore, like most country, Turkey has also started to develop new energy policies for more efficient production and utilization of energy. In order to help the understanding of more efficient energy utilization, so far there have been some researches made about energy and exergy (available energy) utilization efficiencies of Turkey with the viewpoint of the quality of energy. In this study, it is aimed to examine energy system of Turkey by computing energy and exergy utilization efficiencies between 1990 and 2006 using the first and the second laws of thermodynamics. The utility sector energy efficiencies are found to range from 41% to 47% and the exergy efficiencies to range from 42% and 48% between 1990 and 2006. The energy efficiencies of the end use sectors of Turkey , namely Industrial, Transportation, Agricultural and Residential-Commercial sectors, are respectively 62%, 22%, 27% and 55% on the average with respect to years. On the other hand, their average exergy efficiencies are 33%, 23%, 27% and 7% between the examined years. The total end use energy and exergy efficiencies are 49% and 21% on the average. Overall energy efficiencies of Turkey range between 37% and 41%, whereas overall exergy efficiencies range between 16% and 17%. Within all the sectors, Residential&ndash / Commercial sector is found as the sector having the highest exergetic improvement potential.
95

First And Second Law Analyses Of A Biomass Fulled Solid Oxide Fuel Ceel-micro Turbine Hybrid System

Arabaci, Selin 01 November 2008 (has links) (PDF)
Fuel cells are direct energy conversion devices to generate electricity. They have the lowest emission level of all forms of electricity generation. Fuel cells require no combustion of the fuel. The thermal energy gained from fuel cells may be utilized in micro turbines (gas turbines). In this work, first and second law analyses are performed on a hybrid system consisting of a solid oxide fuel cell (SOFC) combined with a micro turbine to be able to find an optimum point of pressure and corresponding mass ratio to gain maximum work output. Also another system with same equipments only without a gas turbine is investigated to see the effects of gas turbine. The analyses are performed utilizing a code written in MATLAB for each of the equipments. Fuel used is biomass with a certain concentration. To be able to use biomass in a fuel cell-micro turbine hybrid cycle, it is gasified and converted into a certain calorific value gas, with the use of gasifiers. In this study fluidized bed gasifier is utilized since it has the advantage of good mixing and high heat transfer leading to a uniform bed condition. Desulphuration and gas filter units will be implemented in order to clean the producer gas before being used in hybrid system. For a certain percentage of the fuel that may pass through the fuel cell without being used, a combustor is utilized. Optimum point mass and pressure ratios for system are MR = 0.6411 and Pr = 8. Gas turbine supplies more power and higher efficiency to the system. There are different choices for fuel selection in hybrid systems. The reason why biomass is examined among these is that it decreases the depletion of energy carriers and reduces the environmental impact.
96

A Theoretical And Experimental Investigation For Developing A Methodology For Co/poly-generation Systems / With Special Emphasis On Testing, Energy And Exergy Rating

Bingol, Ekin 01 October 2010 (has links) (PDF)
A poly-generation system can be defined as the simultaneous and collocated generation of two or more energy supply types, aimed to maximize the utilization of the thermodynamic potential (efficiency) of the consumed energy resources. A Polygeneration system may involve co-generation (power and heat) or tri-generation (power, heat, and cold) processes and may also be connected to a district energy system. A poly-generation plant reclaims heat in a useful form that would be wasted otherwise in separate electricity and heat (and chilled water in some cases) generating systems. By this way a poly-generation plant provides a variety of benefits including improved efficiency and fuel savings, reduction of the primary energy demand total cost of utility service and unit fuel cost, independency for energy and protection of environment. With the overall efficiencies in the range of 70-90%, poly-generation systems are gaining popularity all around the world. including Turkey. In spite of all their potential benefits and increasing interest for poly-generation systems, there is not yet any rating, testing, metrication and classification guidelines and standards. It is indeed very important to rate the performance and energy savings potential, determine the heat and power outputs, estimate the system efficiency and the ratio of the split of the power produced between thermal and electric. These are the information which are hard to determine since there are not enough common test standards, rating standards and nor consensus-based terminology for combined heat and power systems in the world literature. Even the classification of the cogeneration systems is hardly globalized. Aim of this study is to develop a common procedure with respect to the above shortcomings for testing and rating poly-generation systems under realistic operating conditions with accurate formulae which will help to contribute energy and exergy economy by establishing a robust metrication standard based on new evaluation parameters. This study aims to find a procedure to evaluate a poly-generation system by establishing standard test methods and evaluation tools in terms of parameters like energy and exergy characteristics of thermal and electric loads, temperature demand and power split for determining operational characteristics of the system. This may be achieved by revising and expanding DIRECTIVE 2004/8/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. A case study is expected to be based on a trigeneration power plant to be received within the framework of the EU FP6 HEGEL Poly-generation project, to be tested at METU, which has a capacity of 145 kW electric and 160 kW useful heat.
97

Assessment of Methods to Manipulate Thermal Emission and Evaluate the Quality of Thermal Radiation for Direct Energy Conversion

Wijewardane, Samantha 01 January 2012 (has links)
ABSTRACT Control of spectral thermal emission from surfaces may be desirable in some energy related applications, such as nano-scale antenna energy conversion and thermophotovoltaic conversion. There are a number of methods, from commercially available paints to advanced surface gratings that can be used to modify the thermal emission from a surface. To find out the proper emission controlling technique for a given energy conversion method all the surface emission controlling methods are comprehensively reviewed regarding the emission control capabilities and the range of possible applications. Radiation with high degree of coherence can be emitted using advanced surface emission controlling techniques. The entropy of the thermal radiation, and therefore the exergy, is a function of the degree of coherence. A methodology is presented to calculate the exergy of partially coherent wave fields so that the radiation fields can be evaluated based on exergy. This exergy method is extended to develop a rigorous evaluation criterion for thermal emission controlling methods used in frequency dependent energy conversion applications. To demonstrate these developed criteria using actual data, a surface plasmon emitter is designed and fabricated. Also, possible ways of improving the emitter performance and the research needed to be carryout to fabricate cost effective emitters are described.
98

Efficiency and Mixing Analysis of EGR-Systems for Diesel Engines

Reifarth, Simon January 2014 (has links)
The reduction of fuel consumption and the reduction of toxic emissions are the main goals of research and development in the area of internal combustion engines. The use of exhaust gas recirculation (EGR) to come further in that direction is today an established method for diesel engines. EGR reduces the emissions of nitrogen oxides with a low penalty in fuel consumption. The increasingly hard regulations on emissions put high pressure on the manufacturers to improve these systems. The present work aims at increasing the knowledge in the area of EGR. Two of the main challenges when applying EGR are addressed, efficiency and mixing. The efficiency of the EGR-system is analyzed, focusing on keeping the fuel penalty low for a given EGR-rate. Different layouts of the EGR system are studied and compared regarding their stationary and transient properties. Exergy analysis is used to show the potential for improvement in different system components. In the same time, exergy analysis as a tool is introduced and compared to energy analysis of a system. The usefulness of exergy analysis of the entire gas exchange is shown by the example of a heavy-duty diesel engine. The problem of EGR and air mixing is approached by a detailed study of the mixing process in a heavy-duty diesel engine. Different methods for the measurement of EGR distribution are presented and compared. Additionally, the possibility to predict the mixing effects by 1-D and 3-D simulation is assessed. It is shown that the mixing between air and EGR is highly dependent on the pulsating nature of the flow. The EGR is shown to be transported in packets in the air flow. This leads to the conclusion that mixing not only at the mixing point, but also mixing in flow direction needs to be optimized, as the distribution of EGR between the cylinders is dependent on the timing between the passage of the EGR packets and the valve opening time. / <p>QC 20140203</p>
99

SUSTAINABLE RESOURCE UTILIZATION IN MANUFACTURING OF PRINTED CIRCUIT BOARD ASSEMBLY: EXERGY ANALYSIS OF THE PROCESS

Saiganesh, Subramaniam 01 January 2010 (has links)
Engineering for sustainable development requires prudent utilization of resources under economic, environmental and societal constraints. Resource utilization must follow a holistic approach. This brings in a need for comprehensive metrics which are simple, standard and universal. Thermodynamics may offer a metric that focuses on both quality and quantity of energy resources which may carry information to be combined with other metrics. This metric may be a thermodynamic property called exergy or available energy, which provides a better insight into resource use in both energy and non-energy producing systems. This thesis is devoted to a study of the exergy concept in manufacturing. A high volume PCB assembly, manufactured in a state of the art soldering facility is chosen for the study. Various mass and energy resources flowing through the production line were quantified in terms of exergy. On the basis of exergy content and exergy utilization in the production process, the sustainability in terms of resources use is discussed. An early version of this approach was presented at the International Symposium on Sustainable Systems and Technologies, IEEE, Washington DC, in May 2010.
100

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM

SANKARA, JAYASANKAR 01 January 2005 (has links)
The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of compact heat exchangers through a complex controlled atmosphere brazing (CAB) process. The system under consideration involves fifteen cells of a continuous ramp-up heating, melting, reactive flow, isothermal dwell, and rapid quench solidification processing sequence during a controlled atmosphere brazing of aluminum compact heat exchangers. Detailed mass, energy, and exergy balances were performed. The irreversibility sources were identified and the quality of energy utilization at different processing steps determined. It is demonstrated that advanced thermodynamics metrics based on entropy generation may indicate the level of sustainable energy utilization of transient open systems, such as in manufacturing. This indicator may be related to particular property uniformity during materials processing. In such a case, the property uniformity would indicate systems distance from equilibrium, i.e., from the process sustainable energy utilization level. This idea is applied to net shape manufacturing process considered. A metric based on exergy destruction is devised to relate the heat exchanger temperature uniformity and the quality. The idea advocated in this thesis will represent the coherent framework for developing energy efficient, economically affordable and environmentally friendly manufacturing technology.

Page generated in 0.673 seconds