• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

履約價重設對匯率連動賣權之影響 / The Impact of Resetting Strike Price on Prices and Risks of Quanto Options

何立凱, Ho, Li-Kai Unknown Date (has links)
本論文主要結合了「匯率連動選擇權」與「多點重設型選擇權」、「履約價回顧型選擇權」,除了評價與分析四款匯率連動多點重設型賣權以及匯率連動履約價回顧型賣權,並且探討重設點之選擇對於賣權價格之影響,使其理論與模型更為一般化,發行券商或銀行欲發行此類商品時,更能夠依據模型做更進一步之風險控管,藉以降低避險損失。 / For the most part, this article combines the quanto option with the multiple-reset put and lookback put. In addition to price and analyze the four specific types of quanto multiple-reset puts and quanto lookback puts, this article also provides a more comprehensive study on how the frequency of resetting in exercise price affects the quanto puts’ price and risk. When issuers issue this kind of financial product, based on the model in this article, they will be able to better control the risk further and secure the investment return by diminishing the loss of hedging.
12

Monte Carlo Simulation of Boundary Crossing Probabilities with Applications to Finance and Statistics

Gür, Sercan 04 1900 (has links) (PDF)
This dissertation is cumulative and encompasses three self-contained research articles. These essays share one common theme: the probability that a given stochastic process crosses a certain boundary function, namely the boundary crossing probability, and the related financial and statistical applications. In the first paper, we propose a new Monte Carlo method to price a type of barrier option called the Parisian option by simulating the first and last hitting time of the barrier. This research work aims at filling the gap in the literature on pricing of Parisian options with general curved boundaries while providing accurate results compared to the other Monte Carlo techniques available in the literature. Some numerical examples are presented for illustration. The second paper proposes a Monte Carlo method for analyzing the sensitivity of boundary crossing probabilities of the Brownian motion to small changes of the boundary. Only for few boundaries the sensitivities can be computed in closed form. We propose an efficient Monte Carlo procedure for general boundaries and provide upper bounds for the bias and the simulation error. The third paper focuses on the inverse first-passage-times. The inverse first-passage-time problem deals with finding the boundary given the distribution of hitting times. Instead of a known distribution, we are given a sample of first hitting times and we propose and analyze estimators of the boundary. Firstly, we consider the empirical estimator and prove that it is strongly consistent and derive (an upper bound of) its asymptotic convergence rate. Secondly, we provide a Bayes estimator based on an approximate likelihood function. Monte Carlo experiments suggest that the empirical estimator is simple, computationally manageable and outperforms the alternative procedure considered in this paper.
13

選擇權靜態避險複製之研究

吳艷琴 Unknown Date (has links)
衍生自Black-Scholes選擇權評價公式之動態避險策略,礙於現實世界當中連續避險之不可行,兼之以交易成本之考量,使其在實務運用上困難重重。尤其是在股價波動劇烈之際,動態避險根本無法順利進行。本論文所探討之選擇權靜態複製方式,便是希望克服動態避險連續交易及交易成本之困難。任一選擇權之靜態複製組合乃由同標的之其它選擇權所構成。其於建構完成之後,不需再有其它後續之調整動作,便可複製標的資產於未來一段時間,以及標的資產在某些價位之下的價值,因之稱為"靜態"複製組合 就理論而言,欲達成完全複製之目的需使用無限多個選擇權來進行複製。但本文將說明即使是在只使用少數選擇權的情況之下,亦可達成很不錯之複複製效果。本文探討之對象分標準選擇權與新奇選擇權,新奇選擇權以界限選擇權為主,再延伸至執行價可重設之選擇權。我們將詳細地說明如何建構這些選擇權之靜態複製組合,並以案例說明其複製效果。 動態避險針對的為選擇權之Delta風險;而靜態複製則試圖對Gamma風險進行規避。嚴格而言,靜態複製組合只有在標的資產波動度及無險利率等因素均維持不變之下才可說是靜態的。因而本文亦探討在前述因素變動之下,靜態複製之效果將受到何種程度之影響。 除了在避險交易上的功用之外,靜態複製之概念亦可廣泛地應用到評價與新商品的設計方面。在臺灣金融市場走向國際化、自由化的過程當中,這些都是臺灣金融業者應極力加強與貯備實力的。而在這方面,靜態複製或許可為其一大助力。 論 文 摘 要 I 目 錄 II 表 目 次 IV 圖 目 次 V 第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 3 第三節、 研究架構與流程圖 4 第二章、 選擇權基本理論探討 6 第一節、 選擇權評價模型 6 一、 Black - Scholes 選擇權評價模型 (Black - Scholes Option Pricing Model) 6 二、 二項式選擇權評價模型 (Binomial Option Pricing Model) 9 第二節、 選擇權風險因子之探討 13 第三節、 動態複製之原理以及其在實務上難以克服的困難 18 一、 動態複製(Dynamic Hedging) 18 二、 實務運用上難以克服的困難 19 第四節、 靜態複製及其於實務上的運用 23 一、 靜態複製之原理 23 二、 於實務上的運用 25 第三章、 標準選擇權之靜態複製 27 第一節、 靜態避險組合之建構:BINOMIAL WORLD 27 第二節、 靜態複製組合之建構:REAL WORLD 34 一、 靜態複製組合建構方式一 37 二、 靜態複製組合建構方式二 40 三、 靜態複製組合建構方式三 44 第三節、 理論上之靜態複製與動態複製之比較 48 一、 蒙地卡羅模擬法介紹 48 二、 模擬結果與分析 50 第四節、 S&P 500股價指數選擇權動態避險與靜態避險之比較 61 第四章、 新奇選擇權之靜態複製 69 第一節、 界限選擇權 (BARRIER OPTION) 69 一、 界限選擇權簡介 69 二、 界限選擇權之風險因子 71 三、 靜態避險組合之建構:Binomial World 74 四、 靜態避險組合之建構:Real World 76 第二節、 重設型選擇權(RESET OPTION) 86 一、 重設型選擇權基本概念 86 二、 重設型選擇權之評價方式 87 三、 重設型選擇權之靜態避險 88 第五章、 敏感性分析 92 第一節、 標準選擇權之敏感性分析 92 一、 對標的資產價格波動度之敏感性分析 92 二、 對利率之敏感度分析 96 第二節、 界限選擇權之敏感性分析 99 一、 對標的資產波動度之敏感性分析 99 二、 對利率之敏感性分析 100 第六章、 結論 103 第一節、 研究結論 103 一、 靜態複製組合建構方式與複製效果 103 二、 對標的資產波動度與無險利率之敏感性 105 第二節、 對後續研究者的建議 106 附錄一:靜態避險之數學模式 107 附錄二:其它標準選擇權靜態複製之例子 110 附 表 114 參考文獻 135
14

履約價格可調整之認購權證研究--財務工程之應用 / The research of strike price adjustable warrants - the application of financial engineering

謝文雄, Hsieh, Wen-Hsiung Unknown Date (has links)
自 1997 年 9 月起,證券商開始獲准發行認購權證,由於證券商發行認購權證的時機與選擇標的物之不當,造成許多投資人之虧損,而機構投資人也多採取觀望態度,加上主管機關對於發行者在法令及課稅上的限制,導致整個認購權證市場交易冷清,未能發揮認購權證應有的避險功能。而本文所研究之可調整型(Adjustable)認購權證,是屬於新型的認購權證,此產品可以在契約內容中規定,在認購權證發行之後,若標的物證券之價格在一定期限之內,標的股價跌破原股價的某一比例(h),可以將履約價格(Strike Price)向下調整某一比例(l),以避免造成認購權證在剛推出不久,就因為標的物價格大跌,而使得投資人蒙受損失。相較於一般的認購權證,「可調整型」認購權證可以造成投資人獲利機會的保障增加、發行者權利金收益增加,並且因此使得衍生性金融市場更加活絡,造成三贏的局面。 Cox, Ross and Rubinstein(1979)提出二項評價模式,其利用風險中立 ( Risk Neutral ) 的論點,以間斷的股價過程代替 Black-Scholes(1973) 模式所假設的連續股價隨機過程,本文研究之「可調整型」認購權證之評價模式,以二項評價模式為出發點,利用此模式在一些特定的限制條件之下,配合路徑決定型選擇權、界線選擇權之概念,對「可調整型」認購權證做出合理的評價,另外,本研究以 Matlab 程式語言,撰寫出「可調整型」認購權證的價格,並使用模擬(Simulation) 的方式,探討「可調整型」認購權證的特性及避險方式與效果,以期提供券商、一般企業及投資者最佳的避險及獲利管道,其主要結果如下: 1.在評價「可調整型」認購權證時,時間間隔(Time Step)愈大時,電腦計算的時間效率愈差,若 Time Step 大於 80 時,其價格差異性會低於百分之二。 2.h 與「可調整型」認購權證價格呈正向變動關係,l 與「可調整型」認購權證價格呈反向變動關係。本文條件之下,h 落於 0.6-0.8 之間、l 落於 0.4-0.6 之間,對於「可調整型」認購權證價格之影響最大。 3.「可調整型」認購權證與一般型認購權證的差價比例,隨波動率增加而增加。 4.隨波動率之增加,一般型認購權證之 vega 值有大於「可調整型」認購權證 vega 值的趨勢。 5.在利用 delta 避險策略之下,以獲利金額來看,波動率大之股票較適合發行「可調整型」認購權證,波動率小之股票較適合發行一般型認購權證。 因為「可調整型」認購權證目前在台灣並沒有實證資料,因此無法評估本文模型之價格與實際價格之誤差,未來若出現此新金融商品時,可以評估理論與實際之差異。本文中並未探討利率對於「可調整型」認購權證之影響,後續研究可以討論利率之變動對於此新型認購權證之影響。 / From September 1997,the SEC permits warrants listing in Taiwan's security market. Because of the improper issuing timing and inappropriate underlying assets, many investors get great loss in warrant investment. Besides, many other restrictions from the government make the warrants market more inactive, and then the warrants cannot proper the hedging market. Researching the strike price adjustable warrants is this thesis subject. This innovative warrant allows the strike price(K) adjusting to lK(0<l<1), when the price of underlying asset is lower than the barrier(hS). This article studies the pricing model and hedging strategies of adjustable warrants. The pricing of the adjustable warrants uses some option pricing formulae, like the binomial option pricing model、path-dependent options、barrier options. This article uses Matlab language to price the adjustable warrants, and then uses simulation method to discuss the characteristics and the hedging strategies of the adjustable warrants. Following are the results: 1.When pricing the adjustable warrants, the more time step we choice, the more computer pricing time we get. If the time step is more than 80, the price difference is less than 2%. 2.Toward adjustable warrants(AW) price, h has the positive effect and l has the negative effect. When 0.6<h<0.8 and 0.4<l<0.6 , the AW price has the most sensitivity. 3.As the volatility raising, the difference from AW price and plain vanilla warrant price will become greater. 4.As the volatility raising, the vega of plain vanilla warrant will become greater than the vega of AW. 5.Using the delta hedge, from the profit aspect, high volatility stock is suitable for AW and low volatility stock is suitable for plain vanilla warrant. Because there are no practical information of AW in Taiwan's warrant market, so we cannot evaluate the pricing error form our model. If this kind of product enters the market in the future, we can compare difference of AW between theoretical and empirical price.
15

Pricing a basket option when volatility is capped using affinejump-diffusion models

Krebs, Daniel January 2013 (has links)
This thesis considers the price and characteristics of an exotic option called the Volatility-Cap-Target-Level(VCTL) option. The payoff function is a simple European option style but the underlying value is a dynamic portfolio which is comprised of two components: A risky asset and a non-risky asset. The non-risky asset is a bond and the risky asset can be a fund or an index related to any asset category such as equities, commodities, real estate, etc. The main purpose of using a dynamic portfolio is to keep the realized volatility of the portfolio under control and preferably below a certain maximum level, denoted as the Volatility-Cap-Target-Level (VCTL). This is attained by a variable allocation between the risky asset and the non-risky asset during the maturity of the VCTL-option. The allocation is reviewed and if necessary adjusted every 15th day. Adjustment depends entirely upon the realized historical volatility of the risky asset. Moreover, it is assumed that the risky asset is governed by a certain group of stochastic differential equations called affine jump-diffusion models. All models will be calibrated using out-of-the money European call options based on the Deutsche-Aktien-Index(DAX). The numerical implementation of the portfolio diffusions and the use of Monte Carlo methods will result in different VCTL-option prices. Thus, to price a nonstandard product and to comply with good risk management, it is advocated that the financial institution use several research models such as the SVSJ- and the Seppmodel in addition to the Black-Scholes model. Keywords: Exotic option, basket option, risk management, greeks, affine jumpdiffusions, the Black-Scholes model, the Heston model, Bates model with lognormal jumps, the Bates model with log-asymmetric double exponential jumps, the Stochastic-Volatility-Simultaneous-Jumps(SVSJ)-model, the Sepp-model.
16

界限選擇權訂價與避險之研究--二項評價模型之修正與靜態避險之應用 / The pricing and hedging of barrier options--the modification of CRR model and the application of static hedge

何銘銓, Ming-chuan Ho Unknown Date (has links)
界限選擇權雖屬新奇選擇權的一種,但在國外卻已是交易頻繁的商品,而在國內則尚未有此一商品的交易發生。因此,為了能讓國內投資人與券商更了解此一商品,本研究便以界限選擇權為對象,針對其訂價與避險兩大主題進行研究,期能獲至有貢獻之結論。 在訂價方面,以二項評價模型對界限選擇權進行評價時,會產生鋸齒狀的收歛情況,對於精確評價界限選擇權造成極大的困擾。本研究對此問題提供一修正二項評價模型的方法,可以有效地消除評價時收歛不佳的現象。 在避險方面,本研究使用靜態避險法對其進行避險,並結合修正後之二項評價模型以建構在靜態避險法下所需之複製投資組合,此乃以往所未有之研究。在本文中所獲至之結果顯示,使用靜態避險法對界限選擇權進行避險所達成之避險效率實為在動態避險下所不能及;同時,隨著時間間隔的縮小,避險效率會隨之提高。此外,使用修正後之二項評價模型所建構之複製投資組合較以未修正之二項評價模型所建構之複製投資組合,在避險效率上會有較佳之表現。 第一章 緒論 1 第一節 研究背景 .1 第二節 研究動機與目的 1 第三節 研究架構與流程 2 第二章 界限選擇權之簡介及其應用 5 第一節 界限選擇權之簡介 5 第二節 界限選擇權之應用 7 第三章 文獻探討 14 第一節 選擇權訂價模式 14 第二節 界限選擇權之訂價 19 第三節 界限選擇權之避險 22 第四章 界限選擇權之訂價分析 23 第一節 二項評價模型之訂價法 23 第二節 對二項評價模型之修正 29 第三節 避險係數之分析 36 第五章 界限選擇權之避險分析 39 第一節 靜態避險法之介紹 39 第二節 避險效率之分析 43 第六章 結論與建議 62 第一節 結論 62 第二節 研究限制 63 第三節 後續研究建議 63 參考文獻 65 附錄:MATLAB程式 67 / Barrier option is one of those exotic options, yet it has been frequently traded in the foreign options markets. In Taiwan, this commodity is still new to most of us. Consequently, for a better understand and probably the issuance of this commodity, this research focuses on the pricing and hedging of barrier options, hoping that the research can obtain contributive conclusions. On pricing, when using CRR model as a pricing method for barrier options, there exists a situation which the convergence of the pricing is saw-toothed, contributing to the imprecise pricing results. This study provides a modification for the CRR model that can mitigate the saw-toothed convergence very effectively. On hedging, this study uses static hedge as a hedging measure, combining with the modified CRR model, which has very been studied before. The results of this study tell that, using static hedge can reach a very accurate hedging results, which is not attainable using dynamic hedge. Also, the more the time spacing shrinks, the more exact the hedge is. Finally, using modified CRR model as a basis producing replicating portfolio under static hedge can have a better performance in hedging than that of using unmodified CRR model.

Page generated in 0.0981 seconds