Spelling suggestions: "subject:"expectations maximization.""
131 |
Distribuições misturas de escala skew-normal : estimação e diagnostico em modelos lineares / Scale mixtures of skew-normal distribuitions : estimation and diagnostics for linear modelsZeller, Camila Borelli 14 August 2018 (has links)
Orientadores: Filidor E. Vilca Labra, Victor Hugo Lachos Davila / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T22:06:24Z (GMT). No. of bitstreams: 1
Zeller_CamilaBorelli_D.pdf: 2738820 bytes, checksum: d40d3df77a4b5d44de0f48a8f8afed01 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho, estudamos alguns aspectos de estimação e diagnóstico de influência local (Cook, 1986) em modelos lineares, especificamente no modelo de regressão linear, no modelo linear misto e no modelo de Grubbs sob a classe de distribuições assimétricas misturas de escala skew-normal (SMSN) (Branco & Dey, 2001). Esta família de distribuições tem como membros particulares as versões simétrica e assimétrica das distribuições t-Student, slash e normal contaminada, todas com caudas mais pesadas que a distribuição normal, A estimação dos parâmetros será via o algoritmo EM (Dempster et al, 1977) e a análise de diagnóstico será baseada na técnica de dados aumentados que usa a esperança condicional da função log-verossimilhança dos dados aumentados (função-Q) proveniente do algoritmo EM, como proposta por Zhu & Lee (2001) e Lee & Xu (2004). Assim, pretendemos contribuir positivamente para desenvolvimento da área dos modelos lineares, estendendo alguns resultados encontrados na literatura, por exemplo, Pinheiro et al (2001), Arellano-Valle et aí (2005), Osório (2006), Montenegro et al (2009a), Montenegro et al (2009b), Osório et al (2009), Lachos et aí (2010), entre outros. / Abstract: In this work, we study some aspects of the estimation and the diagnostics based on the local influence (Cook, 1986) in linear models under the class of scale mixtures of the skew-normal (SMSN) distribution, as proposed by Branco & Dey (2001). Specifically, we consider the linear regression model, the linear mixed model and the Grubbs' measurement error model. The SMSN class of distributions provides a useful generalization of the normal and the skew-normal distributions since it covers both the asymmetric and heavy-tailed distributions such as the skew-t, the skew-slash, the skew-contaminated normal, among others. The local influence analysis will be based on the conditional expectation of the complete-data log-likelihood function (function-Q) from the EM algorithm (Dempster et al, 1977) ), as proposed by Zhu & Lee (2001) and Lee & Xu (2004). We believe that the results of our work have contributed positively to the development of this area of linear models, since we have extended some results from the works of Pinheiro et al. (2001), Arellano-Valle et al. (2005), Osorio (2006), Montenegro et al. (2009a), Montenegro et al. (2009b), Osorio et al. (2009), Lachos et al. (2010), among others. / Doutorado / Método Estatístico / Doutor em Estatística
|
132 |
Modelo de regressão linear mistura de escala normal com ponto de mudança : estimação e diagnóstico / Scale mixture of normal regression linear regression model with change point : estimation and diagnosticsHuaira Contreras, Carlos Alberto, 1971- 25 August 2018 (has links)
Orientador: Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T19:08:47Z (GMT). No. of bitstreams: 1
HuairaContreras_CarlosAlberto_M.pdf: 2748699 bytes, checksum: fc8d02e2b19e638936faea1dec0b8ddc (MD5)
Previous issue date: 2014 / Resumo: Modelos lineares são frequentemente usados em estatística para descrever a relação entre uma variável resposta e uma ou mais variáveis explicativas, onde geralmente os erros são assumidos como normalmente distribuídos. Além disso, em modelos de regressão linear assume-se que o mesmo modelo linear é válido para todo o conjunto de dados. O modelo pode mudar após um ponto específico e assim um modelo linear com um ponto de mudança poderá ser apropriado para o conjunto de dados. O principal objetivo deste trabalho é estudar alguns aspectos de estimação e análise de diagnóstico em modelos de regressão linear com ponto de mudança sob distribuições de mistura de escala normal. A análise de diagnóstico é baseada nos trabalhos de Cook (1986) e Zhu & Lee (2001). Os resultados obtidos representam uma extensão de alguns resultados apresentados na literatura, ver por exemplo Chen (1998) e Osorio & Galea (2005). Finalmente, estudos de simulação através de simulações Monte Carlo são realizados e exemplos numéricos são apresentados para ilustrar os resultados propostos / Abstract: Linear models are widely used in statistics to describe the relationship between a response variable and one or more explanatory variables, where usually it is assumed the errors are normally distributed. Moreover, in linear regression model is assumed that the same linear model holds for the whole data set, but this is not always valid. The model may change after a specific point, and so a linear model with a change point would be appropriate for data set. The main objective of work is to study some aspect of estimation and analysis of diagnostics in the regression linear with change point model under scale mixture of normal distributions. The analysis of diagnostics is based on the works of Cook (1986) and Zhu & Lee (2001). The results obtained represent a extension of some results obtained in the literature; see for example Chen (1998) and Osorio & Galea (2005). Finally, simulation studies are investigated through Monte Carlo simulations and numerical examples are presented to illustrate the proposed results / Mestrado / Estatistica / Mestre em Estatística
|
133 |
Expectation-Maximization (EM) Algorithm Based Kalman Smoother For ERD/ERS Brain-Computer Interface (BCI)Khan, Md. Emtiyaz 06 1900 (has links) (PDF)
No description available.
|
134 |
Who Spoke What And Where? A Latent Variable Framework For Acoustic Scene AnalysisSundar, Harshavardhan 26 March 2016 (has links) (PDF)
Speech is by far the most natural form of communication between human beings. It is intuitive, expressive and contains information at several cognitive levels. We as humans, are perceptive to several of these cognitive levels of information, as we can gather the information pertaining to the identity of the speaker, the speaker's gender, emotion, location, the language, and so on, in addition to the content of what is being spoken. This makes speech based human machine interaction (HMI), both desirable and challenging for the same set of reasons. For HMI to be natural for humans, it is imperative that a machine understands information present in speech, at least at the level of speaker identity, language, location in space, and the summary of what is being spoken.
Although one can draw parallels between the human-human interaction and HMI, the two differ in their purpose. We, as humans, interact with a machine, mostly in the context of getting a task done more efficiently, than is possible without the machine. Thus, typically in HMI, controlling the machine in a specific manner is the primary goal. In this context, it can be argued that, HMI, with a limited vocabulary containing specific commands, would suffice for a more efficient use of the machine.
In this thesis, we address the problem of ``Who spoke what and where", in the context of a machine understanding the information pertaining to identities of the speakers, their locations in space and the keywords they spoke, thus considering three levels of information - speaker identity (who), location (where) and keywords (what). This can be addressed with the help of multiple sensors like microphones, video camera, proximity sensors, motion detectors, etc., and combining all these modalities. However, we explore the use of only microphones to address this issue. In practical scenarios, often there are times, wherein, multiple people are talking at the same time. Thus, the goal of this thesis is to detect all the speakers, their keywords, and their locations in mixture signals containing speech from simultaneous speakers. Addressing this problem of ``Who spoke what and where" using only microphone signals, forms a part of acoustic scene analysis (ASA) of speech based acoustic events.
We divide the problem of ``who spoke what and where" into two sub-problems: ``Who spoke what?" and ``Who spoke where". Each of these problems is cast in a generic latent variable (LV) framework to capture information in speech at different levels. We associate a LV to represent each of these levels and model the relationship between the levels using conditional dependency.
The sub-problem of ``who spoke what" is addressed using single channel microphone signal, by modeling the mixture signal in terms of LV mass functions of speaker identity, the conditional mass function of the keyword spoken given the speaker identity, and a speaker-specific-keyword model. The LV mass functions are estimated in a Maximum likelihood (ML) framework using the Expectation Maximization (EM) algorithm using Student's-t Mixture Model (tMM) as speaker-specific-keyword models. Motivated by HMI in a home environment, we have created our own database. In mixture signals, containing two speakers uttering the keywords simultaneously, the proposed framework achieves an accuracy of 82 % for detecting both the speakers and their respective keywords.
The other sub-problem of ``who spoke where?" is addressed in two stages. In the first stage, the enclosure is discretized into sectors. The speakers and the sectors in which they are located are detected in an approach similar to the one employed for ``who spoke what" using signals collected from a Uniform Circular Array (UCA). However, in place of speaker-specific-keyword models, we use tMM based speaker models trained on clean speech, along with a simple Delay and Sum Beamformer (DSB). In the second stage, the speakers are localized within the active sectors using a novel region constrained localization technique based on time difference of arrival (TDOA). Since the problem being addressed is a multi-label classification task, we use the average Hamming score (accuracy) as the performance metric. Although the proposed approach yields an accuracy of 100 % in an anechoic setting for detecting both the speakers and their corresponding sectors in two-speaker mixture signals, the performance degrades to an accuracy of 67 % in a reverberant setting, with a $60$ dB reverberation time (RT60) of 300 ms. To improve the performance under reverberation, prior knowledge of the location of multiple sources is derived using a novel technique derived from geometrical insights into TDOA estimation. With this prior knowledge, the accuracy of the proposed approach improves to 91 %. It is worthwhile to note that, the accuracies are computed for mixture signals containing more than 90 % overlap of competing speakers.
The proposed LV framework offers a convenient methodology to represent information at broad levels. In this thesis, we have shown its use with three different levels. This can be extended to several such levels to be applicable for a generic analysis of the acoustic scene consisting of broad levels of events. It will turn out that not all levels are dependent on each other and hence the LV dependencies can be minimized by independence assumption, which will lead to solving several smaller sub-problems, as we have shown above. The LV framework is also attractive to incorporate prior knowledge about the acoustic setting, which is combined with the evidence from the data to derive the information about the presence of an acoustic event. The performance of the framework, is dependent on the choice of stochastic models, which model the likelihood function of the data given the presence of acoustic events. However, it provides an access to compare and contrast the use of different stochastic models for representing the likelihood function.
|
135 |
Comparing Resource Abundance And Intake At The Reda And Wisla River EstuariesZahid, Saman January 2021 (has links)
The migratory birds stop at different stopover sites during migration. The presence of resources in these stopover sites is essential to regain the energy of these birds. This thesis aims to compare the resource abundance and intake at the two stopover sites: Reda and Wisla river estuaries. How a bird's mass changes during its stay at an estuary is considered as a proxy for the resource abundance of a site. The comparison is made on different subsets, including those which has incomplete data, i.e. next day is not exactly one day after the previous capture. Multiple linear regression, Generalized additive model and Linear mixed effect model are used for analysis. Expectation maximization and an iterative predictive process are implemented to deal with incomplete data. We found that Reda has higher resource abundance and intake as compared to that of Wisla river estuary.
|
136 |
Získávání znalostí z multimediálních databází / Knowledge Discovery in Multimedia DatabasesJurčák, Petr January 2009 (has links)
This master's thesis is dedicated to theme of knowledge discovery in Multimedia Databases, especially basic methods of classification and prediction used for data mining. The other part described about extraction of low level features from video data and images and summarizes information about content-based search in multimedia content and indexing this type of data. Final part is dedicated to implementation Gaussian mixtures model for classification and compare the final result with other method SVM.
|
137 |
Particle-based Stochastic Volatility in Mean model / Partikel-baserad stokastisk volatilitet medelvärdes modelKövamees, Gustav January 2019 (has links)
This thesis present a Stochastic Volatility in Mean (SVM) model which is estimated using sequential Monte Carlo methods. The SVM model was first introduced by Koopman and provides an opportunity to study the intertemporal relationship between stock returns and their volatility through inclusion of volatility itself as an explanatory variable in the mean-equation. Using sequential Monte Carlo methods allows us to consider a non-linear estimation procedure at cost of introducing extra computational complexity. The recently developed PaRIS-algorithm, introduced by Olsson and Westerborn, drastically decrease the computational complexity of smoothing relative to previous algorithms and allows for efficient estimation of parameters. The main purpose of this thesis is to investigate the volatility feedback effect, i.e. the relation between expected return and unexpected volatility in an empirical study. The results shows that unanticipated shocks to the return process do not explain expected returns. / Detta examensarbete presenterar en stokastisk volatilitets medelvärdes (SVM) modell som estimeras genom sekventiella Monte Carlo metoder. SVM-modellen introducerades av Koopman och ger en möjlighet att studera den samtida relationen mellan aktiers avkastning och deras volatilitet genom att inkludera volatilitet som en förklarande variabel i medelvärdes-ekvationen. Sekventiella Monte Carlo metoder tillåter oss att använda icke-linjära estimerings procedurer till en kostnad av extra beräkningskomplexitet. Den nyligen utvecklad PaRIS-algoritmen, introducerad av Olsson och Westerborn, minskar drastiskt beräkningskomplexiteten jämfört med tidigare algoritmer och tillåter en effektiv uppskattning av parametrar. Huvudsyftet med detta arbete är att undersöka volatilitets-återkopplings-teorin d.v.s. relationen mellan förväntad avkastning och oväntad volatilitet i en empirisk studie. Resultatet visar på att oväntade chockar i avkastningsprocessen inte har förklarande förmåga över förväntad avkastning.
|
138 |
Machine learning multicriteria optimization in radiation therapy treatment planning / Flermålsoptimering med maskininlärning inom strålterapiplaneringZhang, Tianfang January 2019 (has links)
In radiation therapy treatment planning, recent works have used machine learning based on historically delivered plans to automate the process of producing clinically acceptable plans. Compared to traditional approaches such as repeated weighted-sum optimization or multicriteria optimization (MCO), automated planning methods have, in general, the benefits of low computational times and minimal user interaction, but on the other hand lack the flexibility associated with general-purpose frameworks such as MCO. Machine learning approaches can be especially sensitive to deviations in their dose prediction due to certain properties of the optimization functions usually used for dose mimicking and, moreover, suffer from the fact that there exists no general causality between prediction accuracy and optimized plan quality.In this thesis, we present a means of unifying ideas from machine learning planning methods with the well-established MCO framework. More precisely, given prior knowledge in the form of either a previously optimized plan or a set of historically delivered clinical plans, we are able to automatically generate Pareto optimal plans spanning a dose region corresponding to plans which are achievable as well as clinically acceptable. For the former case, this is achieved by introducing dose--volume constraints; for the latter case, this is achieved by fitting a weighted-data Gaussian mixture model on pre-defined dose statistics using the expectation--maximization algorithm, modifying it with exponential tilting and using specially developed optimization functions to take into account prediction uncertainties.Numerical results for conceptual demonstration are obtained for a prostate cancer case with treatment delivered by a volumetric-modulated arc therapy technique, where it is shown that the methods developed in the thesis are successful in automatically generating Pareto optimal plans of satisfactory quality and diversity, while excluding clinically irrelevant dose regions. For the case of using historical plans as prior knowledge, the computational times are significantly shorter than those typical of conventional MCO. / Inom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
|
139 |
Joint Estimation and Calibration for Motion SensorLiu, Peng January 2020 (has links)
In the thesis, a calibration method for positions of each accelerometer in an Inertial Sensor Array (IMU) sensor array is designed and implemented. In order to model the motion of the sensor array in the real world, we build up a state space model. Based on the model we use, the problem is to estimate the parameters within the state space model. In this thesis, this problem is solved using Maximum Likelihood (ML) framework and two methods are implemented and analyzed. One is based on Expectation Maximization (EM) and the other is to optimize the cost function directly using Gradient Descent (GD). In the EM algorithm, an ill-conditioned problem exists in the M step, which degrades the performance of the algorithm especially when the initial error is small, and the final Mean Square Error (MSE) curve will diverge in this case. The EM algorithm with enough data samples works well when the initial error is large. In the Gradient Descent method, a reformulation of the problem avoids the ill-conditioned problem. After the parameter estimation part, we analyze the MSE curve of these parameters through the Monte Carlo Simulation. The final MSE curves show that the Gradient Descent based method is more robust in handling the numerical issues of the parameter estimation. The Gradient Descent method is also robust to noise level based on the simulation result. / I denna rapport utvecklas och implementeras en kalibreringsmethod för att skatta positionen för en grupp av accelerometrar placerade i en så kallad IMU sensor array. För att beskriva rörelsen för hela sensorgruppen, härleds en dynamisk tillståndsmodell. Problemställningen är då att skatta parametrarna i tillståndsmodellen. Detta löses med hjälp av Maximum Likelihood-metoden (ML) där två stycken algoritmer implementeras och analyseras. En baseras på Expectation Maximization (EM) och i den andra optimeras kostnadsfunktionen direkt med gradientsökning. I EM-algoritmen uppstår ett illa konditionerat delproblem i M-steget, vilket försämrar algoritmens prestanda, speciellt när det initiala felet är litet. Den resulterande MSE-kurvan kommer att avvika i detta fall. Däremot fungerar EM-algoritmen väl när antalet datasampel är tillräckligt och det initiala felet är större. I gradientsökningsmetoden undviks konditioneringsproblemen med hjälp av en omformulering. Slutligen analyseras medelkvadratfelet (MSE) för parameterskattningarna med hjälp av Monte Carlo-simulering. De resulterande MSE-kurvorna visar att gradientsökningsmetoden är mer robust mot numeriska problem, speciellt när det initiala felet är litet. Simuleringarna visar även att gradientsökning är robust mot brus.
|
140 |
A class of bivariate Erlang distributions and ruin probabilities in multivariate risk modelsGroparu-Cojocaru, Ionica 11 1900 (has links)
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables. / In this contribution, we introduce a new class of bivariate distributions of Marshall-Olkin type, called bivariate Erlang distributions. The Laplace transform, product moments and conditional densities are derived. Potential applications of bivariate Erlang distributions in life insurance and finance are considered. Further, our research project is devoted to the study of multivariate risk processes, which may be useful in analyzing ruin problems for insurance companies with a portfolio of dependent classes of business. We apply results from the theory of piecewise deterministic Markov processes in order to derive exponential martingales needed to establish computable upper bounds of the ruin probabilities, as their exact expressions are intractable.
|
Page generated in 0.1344 seconds