• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exposants de Lyapounov et Densité d'Etats Intégrée pour des opérateurs de Schrödinger continus à valeurs matricielles.

Boumaza, Hakim 29 June 2007 (has links) (PDF)
On étudie les propriétés dynamiques et spectrales de deux types d'opérateurs de Schrödinger à valeurs matricielles. Le premier est un modèle d'Anderson, le second un modèle d'interactions ponctuelles. On prouve l'absence de spectre absolument continu pour ces deux opérateurs en prouvant la séparabilité de leurs exposants de Lyapounov, puis on étudie la régularité des exposants de Lyapounov et de la Densité d'Etats Intégrée associées à ces opérateurs. On prouve que ces deux quantités sont Hölder continues.
2

Autour de l'entropie des difféomorphismes de variétés non compactes / On the entropy of diffeomorphisms of non compact manifolds

Riquelme, Felipe 23 June 2016 (has links)
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des variétés riemanniennes non compactes. Dans un premier temps, nous éclaircissons les liens entre différentes notions d'entropie dans ce cadre non compact. Ensuite, nous utilisons ces premiers résultats pour y étudier la validité de l'inégalité de Ruelle. Rappelons ici que cette inégalité, pour des difféomorphismes de variétés riemanniennes compactes, nous dit que l'entropie est majorée par la somme des exposants de Lyapounov positifs. Nous montrons que, lorsque nous enlevons l'hypothèse de compacité, l'inégalité de Ruelle n'est pas toujours satisfaite. Nous obtenons ce résultat en construisant une famille explicite de contre-exemples. En revanche, nous montrons, dans le cas d'un difféomorphisme de comportement asymptotique linéaire, ou du flot géodésique sur le fibré unitaire tangent d'une variété riemannienne à courbure négative, que l'inégalité de Ruelle est toujours satisfaite. Pour finir, nous nous intéressons au problème de la perte possible de masse d'une suite de mesures de probabilité d'une variété riemannienne non compacte. Dans le cas du flot géodésique, nous montrons que l'entropie permet de contrôler la masse d'une limite vague de mesures de probabilité invariantes par le flot pour une classe particulière de variétés géométriquement finies. Plus précisément, nous montrons qu'une suite de mesures d'entropie assez grande ne peut pas perdre la totalité de sa masse. De plus, le minorant optimal de l'entropie dans ce résultat est lié à la géométrie de la partie non compacte de la variété: c'est l'exposant critique maximal des sous-groupes paraboliques du groupe fondamental. / In this work, we study the entropy of smooth dynamical systems defined on non compact Riemannian manifolds. First, we clarify some relations between different notions of entropy in this setting. Second, we use these first results in order to study the validity of Ruelle's inequality. This inequality, for diffeomorphisms defined on compact Riemannian manifolds, says that the measure-theoretic entropy is bounded from above by the sum of the positive Lyapunov exponents. We show that without the compactness assumption, Ruelle's inequality is not always satisfied. We obtain this result by constructing an explicit family of counterexamples. On the other hand, we prove, in the case of diffeomorphisms with linear asymptotic behavior, or that one of the geodesic flow on the unit tangent bundle of a Riemannian manifold with negative curvature, that Ruelle's inequality is always satisfied. Finally, we are interested in the problem of the possible escape of mass of a sequence of probability measures on a non compact Riemannian manifold. In the case of the geodesic flow, we show that the entropy allows to control the mass of a weak$^\ast$-limit of a sequence of probability measures, on the unit tangent bundle of a particular class of geometrically finite manifolds, which are also invariant by the flow. More precisely, we show that a sequence of measures with large enough entropy cannot lose the whole mass. Moreover, the optimal lower bound of the entropy in this result is related to the geometry of the non compact part of the manifold: it is the maximal critical exponent of the parabolic subgroups of the fundamental group.
3

Dérivées asymptotiques associées à un système dynamique aléatoire

Lemaire, Sophie 07 January 1999 (has links) (PDF)
Nous étudions le comportement asymptotique des dérivées intrinsèques d'une courbe évoluant sous l'action d'un système dynamique aléatoire régulier. Etant donnée une courbe $c$ sur une variété riemannienne, nous désignons par "dérivées intrinsèques de la courbe $c$ en un point $m$", les dérivées à l'origine d'une paramétrisation normale de la courbe transportée sur l'espace tangent au point $m$, par l'application exponentielle. En utilisant le théorème ergodique multiplicatif d'Oseledets, nous obtenons une condition suffisante sur les deux premiers exposants de Lyapounov d'un système dynamique aléatoire régulier, réversible et ergodique, pour que les premières dérivées intrinsèques des images d'une courbe par ce système convergent. Si $\lambda_1$ et $\lambda_2$ sont les deux premiers exposants de Lyapounov du système, $\lambda_1$ étant supposé de multiplicité un, la condition "$\lambda_2-k\lambda_1<0$" assure la convergence des $k$ premières dérivées intrinsèques ; elle n'exclut donc pas les systèmes dynamiques aléatoires stables. La preuve proposée utilise un développement des dérivées intrinsèques à l'aide de diagrammes et donne un procédé récursif pour déterminer les limites des dérivées intrinsèques. Lorsque le premier exposant de Lyapounov est strictement positif, nous faisons le lien entre les limites des dérivées intrinsèques et les variétés instables associées à cet exposant. Nous vérifions ensuite "l'optimalité" de la condition $\lambda_2-2\lambda_1<0$ assurant la convergence de la courbure, en étudiant une classe particulière de systèmes dynamiques aléatoires : les flots browniens isotropes sur la sphère unité de $R^d$. Plus généralement, nous établissons que la norme au carré du vecteur courbure de l'image d'une courbe par un tel système dynamique aléatoire est une diffusion. L'étude du comportement asymptotique de cette diffusion en fonction de la valeur des deux premiers exposants de Lyapounov montre que, sauf si elle est presque sûrement constante, cette diffusion est récurrente positive si et seulement si $\lambda_2-2\lambda_1<0$.

Page generated in 0.0522 seconds