• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Power cycling capability of advanced packaging and interconnection technologies at high temperature swings

Amro, Raed 24 July 2006 (has links) (PDF)
This work is a contribution to the evaluation of the power cycling reliability of different packaging and interconnection solutions at high temperature swings. It provides the designer of power circuits data for module lifetime prediction especially at high operational temperatures. Failure analysis with the different microscopic techniques provide cognitions about the failure mechanisms and eventual weak points of the power devices at high thermal stresses. / Diese Arbeit liefert einen Beitrag zur Qualifizierung der Lastwechselfestigkeit von modernen Aufbau- und Verbindungstechniken bei hohen Temperaturhüben. Dadurch wird den Designern von Leistungsschaltkreisen Daten zur Abschätzung der Lebensdauer ihrer Komponente besonders unter höheren Umgebungstemperaturen zur Verfügung gestellt. Eine Ausfallanalyse mit dem Rasterelektronenmikroskop (REM) und der Ultraschallmikroskopie liefert Erkenntnisse über die zu erwartende Ausfallmechanismen und die eventuellen Schwachpunkte der Bauelemente bei hohen Temperaturen
12

Validation of Point and Pressure Loading Models for Simply Supported Composite Sandwich Beams

Wright, Bryan K. 27 November 2012 (has links)
Stiffness and strength models are derived for simply supported composite sandwich panels comprised of fibre-reinforced face sheets and polymer cores subject to symmetric four point bending and uniformly distributed loading. Optimal trajectories for minimum mass design are calculated using the models and situated on failure mechanism maps. A stiffness constraint is also derived to omit beam designs of excessive compliance. Analytical models were validated through an extensive series of experiments, considering beams comprised of GFRP face sheets with ROHACELL 51-IG and extruded polystyrene (EPS) polymer cores. An alternate loading fixture was used to simulate uniform pressure loads. In general, experiments were able to validate most analytical expressions for a range of experimental conditions. Though the predictions worked well with most beam cases, analytical models were noted to become unreliable for short or slender beams.
13

Validation of Point and Pressure Loading Models for Simply Supported Composite Sandwich Beams

Wright, Bryan K. 27 November 2012 (has links)
Stiffness and strength models are derived for simply supported composite sandwich panels comprised of fibre-reinforced face sheets and polymer cores subject to symmetric four point bending and uniformly distributed loading. Optimal trajectories for minimum mass design are calculated using the models and situated on failure mechanism maps. A stiffness constraint is also derived to omit beam designs of excessive compliance. Analytical models were validated through an extensive series of experiments, considering beams comprised of GFRP face sheets with ROHACELL 51-IG and extruded polystyrene (EPS) polymer cores. An alternate loading fixture was used to simulate uniform pressure loads. In general, experiments were able to validate most analytical expressions for a range of experimental conditions. Though the predictions worked well with most beam cases, analytical models were noted to become unreliable for short or slender beams.
14

An investigation of combined failure mechanisms in large scale open pit slopes

Franz, Juergen, Mining Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Failure mechanisms in large scale open pit slopes are more complex than could be considered through conventional slope design methods. Pit slope behaviour must be predicted accurately, because for very deep open pits, a small change of slope angle can have serious technical and economic consequences. Failure of hard rock slopes often involves both failure along naturally existing weakness planes and failure of intact rock. Without an advanced understanding of combined rock slope failure mechanisms, the validity of commonly applied methods of large scale slope analysis is questionable. The problem was investigated by means of a toolbox approach, in which a wide range of slope stability analysis methods were used and compared to address specific problems arising during slope design optimisation of the Cadia Hill Open Pit, NSW. In particular, numerical modelling is an advanced tool to obtain insight into potential failure mechanisms and to assist the slope design process. The distinct element method was employed to simulate complex rock slope failure, including fracture extension, progressive step-path failure and brittle failure propagation, which were previously often considered unimportant or too difficult to model. A new, failure-scale-dependent concept for the categorisation of slope failures with six categories ranging from 0 (stable) to 5 (overall slope failure) was suggested to assist risk-based slope design. Parametric slope modelling was conducted to determine the interrelationship between proposed categories and critical slope/discontinuity parameters. Initiation and progression of complex slope failure were simulated and described, which resulted in an advanced understanding of combined slope failure mechanisms and the important role of rock bridges in large scale slope stability. A graphical presentation of the suggested slope failure categories demonstrated their interrelationship to varied slope/discontinuity parameters. Although large scale slope analyses will always involve data-limited systems, this investigation shows that comprehensive, conceptual modelling of slope failure mechanisms can deliver a significantly improved insight into slope behaviour, so that associated slope failure risks can be judged with more confidence. The consideration of combined slope failure mechanisms in the analysis of large scale open pit slopes is essential if slope behaviour is to be realistically modelled.
15

Méthodologie multi-échelle pour évaluer la vulnérabilité des structures en maçonnerie / Multiscale methodology for vulnerability assessment of masonry structures

Tabbakhha, Maryam 14 May 2013 (has links)
L’objectif principal de cette étude est de développer des outils de simulation numérique pour évaluer la vulnérabilité des constructions en maçonnerie sous chargements variés. Ainsi, le comportement de la maçonnerie non armée sous chargement monotone en macro- et micro-échelles est étudié. La simulation du comportement non linéaire du mur de maçonnerie avant et après le pic et la capture de son mécanisme de rupture sont les points centraux de ce travail. Tout d'abord, le mur de maçonnerie d’un panneau est remplacé par deux barres simples utilisant la stratégie des macros-éléments et un comportement tri-linéaire est proposé pour évaluer la résistance à la rupture de la paroi ainsi que son comportement avant et après le pic. L'absence de l'information sur le mécanisme de rupture du mur de maçonnerie et la relation entre le mécanisme de rupture et les propriétés mécaniques des éléments barres dans ce type de modélisation conduisent à opter pour une autre description de ces structures à savoir la stratégie de micro-modélisation. Dans cette stratégie, les unités et les mortiers sont modélisés séparément et l’ensemble du comportement inélastique du mur de maçonnerie est supposé se produire dans les mortiers. Par conséquent, une attention particulière sera accordée au développement d'une description fiable des propriétés matérielles de ces éléments à l'aide d'une loi constitutive précise. La représentation tridimensionnelle d'un mur de maçonnerie faite dans ce travail, améliore la capacité des méthodes actuelles pour prédire le comportement de la maçonnerie sous les deux chargements en plan et hors du plan. D’abord, des enveloppes de rupture comprenant la tension limite et la surface de charge de Mohr-Coulomb sont assignées à l'élément d'interface du code éléments finis GEFDyn. Ensuite, la loi de comportement est améliorée en ajoutant un seuil de compression aux surfaces de charge pour inclure l’endommagement en compression de la maçonnerie à travers l'élément d'interface. Dans le nouveau modèle élastoplastique, les écrouissages négatifs des seuils de traction et de compression ainsi que la cohésion du mortier sont pris en considération. La capacité des deux modèles pour reproduire le comportement avant et après le pic de la résistance au cisaillement du mur de maçonnerie est vérifiée en comparant les résultats numériques avec les données expérimentales. L'importance de l’interaction entre les seuils de compression et celui du cisaillement est montrée en comparant les résultats obtenus avec ceux d'un test réel. Les résultats ont révélé que le second modèle est capable de simuler le comportement du mur de maçonnerie avec une bonne précision. Ensuite, l'effet des propriétés géométriques de la paroi telles que l’existence d’une ouverture et l'élancement, les propriétés des mortiers comme la cohésion, la résistance en traction et la résistance en compression ainsi que la contrainte verticale initiale dans le mur, sur la résistance latérale et le mécanisme de rupture des murs de maçonnerie est démontré. En outre, afin de présenter l’état d’endommagement, des indices de dommage, portant sur la longueur totale des fissures dans différentes rangées et colonnes de mortiers sont introduits et comparés pour différentes configurations. Les longueurs de glissement et d’ouverture de fissures dans les mortiers horizontale et verticale respectivement, sont les paramètres les plus importants qui contrôlent le comportement du mur. Enfin, la relation entre les profils de fissuration différents et les propriétés des matériaux y contribuant sont résumées dans un tableau. / The aim of this thesis is to develop numerical models for evaluating the vulnerability of unreinforced masonry construction under different types of loading. Therefore, the behavior of unreinforced masonry panels under monotonic loading in both macro- and micro- scales is studied. Simulating the nonlinear behavior of the masonry wall in pre and post-peak regions and capturing its failure mechanism is the main focus of this study. First, the masonry wall in the panel is substituted by two simple bars using the so-called macro-element strategy and a tri-linear behavior is proposed to assess the ultimate strength of the wall as well as its response before and after peak. The lack of information about the failure mechanism of the masonry wall and relation between the failure mechanism and mechanical properties of the bar elements in this type of modeling lead to another description of this structure namely micro-modeling strategy. In this strategy, units and mortars are modeled separately and all inelastic behavior of the masonry wall is supposed to happen in mortars. Hence, special attention is paid to development of a reliable description of material properties for these elements using an accurate constitutive law. Three dimensional representation of a masonry wall in this work enhances the capability of existing methods to predict the masonry behavior under both in-plane and out-of-plane loadings. Firstly, failure envelopes including tension cut-off and the Mohr-Coulomb yield surface are assigned to interface elements in GEFDyn finite element software. Then, the elstoplastic constitutive law is improved by adding a compression cap to the yield surfaces in order to include compressive failure of masonry in the interface element. In the new model, softening behavior for tensile and compressive strength as well as cohesion of mortar is considered. The ability of both models to reproduce the pre- and post-peak behavior of the masonry wall is verified by comparing the numerical results with experimental data. The importance of defining the compression failure of masonry by limiting the shear strength of the wall with its compressive strength is shown by comparing the obtained results with those of a real test. The results showed that the second model is capable to simulate the behavior of masonry wall with a good accuracy. Then, the effect of initial stresses and geometrical properties of the wall such as opening and aspect ratio and material properties of the mortar like its cohesion, tensile strength and compressive strength, on lateral strength and failure mechanism of the masonry walls are demonstrated. Moreover, in order to comprehend failure characteristics damage indexes based on the total length of cracks in different rows and columns of mortars are introduced and compared for different configurations. The lengths of sliding in horizontal mortars and opening in vertical ones are the most important parameters that control the behavior of the wall. Finally, the relation between different cracking profiles and contributing material properties are summarized into a table.
16

Effects of marine environment exposure on the static and fatigue mechanical properties of carbon fibre-epoxy composite

Meng, Maozhou January 2016 (has links)
This thesis studies the static and fatigue failure of carbon fibre-epoxy composite for marine use. The primary objective is to investigate the effects of sea water ingress on the static and cyclic performance of laminated composites, by using the combination of experimental, numerical and analytical approaches. Experiments were carried out to collect evidence, including data and images, for further analysis. Samples were made from autoclave-cured carbon fibre-epoxy pre-preg for the static, moisture diffusion and fatigue tests. Three chambers were used in the diffusion test, containing fresh water (tap water), sea water and sea water at 70 bar hydrostatic pressure respectively. And the chambers were placed in an oven at a constant temperature 50 °C in order to accelerate the water absorption. Optical and scanning electron microscopies (SEM) were employed to inspect for manufacturing defects and to identify the failure modes. Some formulae were derived to predict the material properties of laminated composites, to validate the mechanical tests, and to explain the failure criteria of composites. Finite element analysis (FEA) was employed to study the phenomena that were observed in the experiments. FEA has the aim to simulate the static, diffusion and fatigue behaviour involving multiphysics and multiscale effects. The FEA modelling has revealed details of the stress and moisture distributions, which have helped to understand the failure mechanisms of laminated composites. Classical laminate theory (CLT) was employed to develop an analytical model. The basic principles of CLT were extended to three-dimensions, and the analytical solution was critically compared with the FEA results. Some MATLAB tools based on CLT were developed to predict the properties of laminated composites and to analyse the experimental data. These MATLAB codes are shown in the appendix. This thesis has contributed to an improved knowledge of the failure mechanisms of composite materials in both normal and marine environments, and to optimize structural design of FRP composites.
17

Power cycling capability of advanced packaging and interconnection technologies at high temperature swings

Amro, Raed 21 July 2006 (has links)
This work is a contribution to the evaluation of the power cycling reliability of different packaging and interconnection solutions at high temperature swings. It provides the designer of power circuits data for module lifetime prediction especially at high operational temperatures. Failure analysis with the different microscopic techniques provide cognitions about the failure mechanisms and eventual weak points of the power devices at high thermal stresses. / Diese Arbeit liefert einen Beitrag zur Qualifizierung der Lastwechselfestigkeit von modernen Aufbau- und Verbindungstechniken bei hohen Temperaturhüben. Dadurch wird den Designern von Leistungsschaltkreisen Daten zur Abschätzung der Lebensdauer ihrer Komponente besonders unter höheren Umgebungstemperaturen zur Verfügung gestellt. Eine Ausfallanalyse mit dem Rasterelektronenmikroskop (REM) und der Ultraschallmikroskopie liefert Erkenntnisse über die zu erwartende Ausfallmechanismen und die eventuellen Schwachpunkte der Bauelemente bei hohen Temperaturen
18

Mesoscale Physics of Electrified Interfaces with Metal Electrodes

Bairav Sabarish Vishnugopi (15302419) 17 April 2023 (has links)
<p>Li-ion batteries (LIBs) are currently pervasive across portable electronics and electric vehicles and are on the ascent for large-scale applications such as grid storage. However, commercial LIBs based on intercalation chemistries are inching toward their theoretical energy density limits. Consequently, the rapidly growing demands of energy storage have necessitated a recent renaissance in exploring battery systems beyond Li-ion chemistry. Next-generation batteries that utilize Li metal as the anode can improve the energy density and power density of LIBs. Despite the theoretical promise, the commercialization of metal-based batteries requires overcoming several hurdles, stemming from the unstable nature of Li in liquid electrolytes. Upon repeated charging, the metal anode undergoes unrestricted growth of dendrites, devolving to a thermal runaway in extreme circumstances. By replacing the organic liquid electrolyte with a non-flammable solid electrolyte, solid-state batteries (SSBs) can potentially provide enhanced safety attributes over liquid electrolyte cells. Upon pairing of solid electrolytes with a Li metal anode, such systems present the unique possibility of engineering batteries with high energy density and fast charging rates. However, there are a number of technical challenges and fundamental scientific advances necessary for SSBs to achieve reliable electrochemical performance. The formation of dendritic morphologies during charging and the loss of active area at the anode-electrolyte interface during discharging are two critical limitations that need to be addressed.</p> <p>In this thesis, the morphological stability of the Li metal anode is examined based on the mechanistic interaction of electrochemical reaction, ionic transport and surface self-diffusion, that is further dependent on aspects including the thermal field and electrolyte composition. The origin of electrochemical-mechanical instability and metal penetration due to heterogeneities in solid-state electrolytes such as grain boundaries will be analyzed. The phenomenon of contact loss at solid-solid interfaces due to the competing interaction between electrochemical dissolution and Li mechanics will be studied. Lastly, the mechanistic attributes governing the thermal stability of solid-solid interfaces in solid-state batteries will be examined. Overall, the dissertation will focus on understanding the fundamental mechanisms underlying the evolution of solid-liquid and solid-solid interfaces in energy storage and derive potential design guidelines toward achieving stable morphologies in metal-based batteries.</p>
19

Investigation of The Failure Mechanism and Moment Capacity Prediction in a Ten Bolt Flush End Plate Moment Connection

Arthur, Godwin Addiah 19 August 2010 (has links)
No description available.
20

Modeling Oxidation-Induced Degradation and Environment-Induced Damage of Thermal Barrier Coatings

Zhang, Bochun 20 July 2022 (has links)
Thermal Barrier Coating systems (TBCs) serve as a key component in gas turbines in aerospace engines, isolating the metallic substrate from severe heat flux of the environment. The durability of TBCs has been considered to be a critical issue to determine the service lifespan of hot section components. Comprehensive studies of failure mechanisms benefit the gas turbine industry to develop TBCs with better material properties and stable microstructures, thus potentially enhancing their durability. To date, many failure mechanism analyses have been conducted based on the understanding of critical residual stress developed under different thermal tests. For the present study, using the Finite Element (FE) method with temperature-process-dependent model parameters, the maximum residual stress is calculated with evolution of the localized/global interfacial roughness profile based on Electron Beam-Physical Vapour Deposition Thermal Barrier Coating system (EB-PVD TBCs). With studies of cracking routes from past research, qualitative failure mechanism analysis is conducted for EB-PVD TBCs. In addition, the estimated energy release rates are compared to reveal the effect of different thermal profiles on the crack driving forces for Atmospheric Plasma Sprayed Thermal Barrier Coating systems (APS-TBCs). Using previously observed cracking routes from different thermal cycling experiments, a quantitative failure mechanism analysis is conducted for APS-TBCs with modified analytical expressions. In addition, literature works revealed that physics and mechanics-based models were proposed to evaluate environment induced damage. For the last part of my research, erosion of EB-PVD TBCs is estimated using a modified solid particle erosion model. A stochastic approach is applied to study the erosion of EB-PVD topcoat (TC) under real engine service conditions. The durability of TBCs is affected by both oxidation-induced degradation and environment-induced damage. The combination of “internal” crack driving forces (generated from residual stresses developed upon different stages of thermal cycles) and “external” erosion damage (from temperature-process dependent brittle/ductile erosion) lead to complexity of evaluating durability under different service conditions.

Page generated in 0.0699 seconds