• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 588
  • 64
  • Tagged with
  • 652
  • 652
  • 651
  • 51
  • 49
  • 46
  • 42
  • 41
  • 40
  • 38
  • 36
  • 35
  • 34
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

CFD Methods for Predicting Aircraft Scaling Effects

Pettersson, Karl January 2008 (has links)
This thesis deals with the problems of scaling aerodynamic data from wind tunnel to free flight  conditions. The main challenges when this scaling should be performed is how the model support, wall interference and the potentially lower Reynolds number in the windtunnel should be corrected. Computational Fluid Dynamics (CFD) simulations have been performed on a modern transonic transport aircraft in order to reveal Reynolds number effects and how these should be scaled accurately. A methodology for scaling drag and identifying scaling effects in general is presented.  This investigation also examines how the European Transonic Wind tunnel twin sting model support influences the flow over the aircraft. When the Reynolds number is differing between the wind tunnel and free flight conditions, a change in boundary layer transition position can occur. In order to estimate first order boundary layer transition effects a correlation based transition prediction method, previously presented by Menter and Langtry, is implemented in the CFD solver Edge. The transition model is further developed and a novel set of equations for the production terms is found through a CFD/optimizer coupling. The transition data, used to calibrate the CFD transition model,  have been extracted from a low Mach number wind tunnel campaign. At these low Mach numbers many compressible CFD solvers suffer of poor convergence rates and a deficiency in robustness and accuracy might appear. The low Mach number effects are investigated, and an effort to prevent these is done by implementing different preconditioning techniques in the compressible CFD solver Edge. The preconditioners are mainly based on the general Turkel preconditioner, but a novel formulation is also presented in order to make the numerical technique less problem dependent. / QC 20100903
242

Multidisciplinary Design in Aeronautics, Enhanced by Simulation-Experiment Synergy

Melin, Tomas January 2006 (has links)
This thesis covers some aspects of current aircraft design, and presents how experiment and simulation are used as tools. Together they give enhanced effects over employing either one separately. The work presented has been produced using both simulations and experiments. An overview of aircraft design tools is presented, together with a description of their application in research. Participation in two major design projects, HELIX and the Rescue wing, gave an opportunity to combine traditional experimental and computational tools. They also serve as a platform for developing two new tools, the vortex lattice program Tornado and the DoTrack camera based wind tunnel measurement system. The HELIX project aimed at exploring new, unconventional high-lift systems, such as blown flaps, flaperons and active vortex generators. The concepts were investigated with an array of conceptual design tools, ranging from handbook methods to high Reynold’s number wind tunnels. The research was done in several stages. After each stage the concepts failing to reach specifications were discontinued. The active vortex generator concept is followed in detail from the first phase in the HELIX project, and was finally evaluated by full computational fluid dynamics (CFD) and wind tunnel testing. The lessons learned in HELIX were applied to the Rescue wing project, where a kite balloon system for emergency localization was developed. The project is truly multidisciplinary, and both experiment and simulation had to be used in close conjunction. Lack of appropriate methods for measurement and analysis of this kind of device meant that new methods had to be developed. Recent experience of academia working closely together with industry has shown substantial benefits to all parties involved. The synergy of computer modeling and simulation with experiment plays an important role in the common collaborative modus operandi of academia and industry. In particular, the later stages of aeronautic educational programmes should actively pursue such collaboration. / QC 20100910
243

Road Roughness Etimation Using Available Vehicle Sensors

Lundström, Johan January 2009 (has links)
Road conditions affect fuel efficiency and vehicle fatigue when driving heavy trucks. Information about traveled road conditions enable optimization of chassis configuration when driving, and logging of vehicle stress. Previous work on this topic focus mainly on tuning of active suspension parameters in the car industry. One conceivable application for heavy trucks is implementation of active chassis level control based on road conditions, with possible improvements in driving economy as result. Another is logging of usage conditions which helps explain vehicle faults caused by abnormal wear. This work examines the possibilities to use already on vehicle sensors for road roughness estimation. It also investigates what requirements existing signals must fulfill to ensure reliable estimates. Two methods for road roughness estimation are proposed using rear axle level sensor and a simple linear suspension system model.
244

Westhelicopter AB Aircraft Technical Status Report

Ibranovic, Albin January 2009 (has links)
Westhelicopter INC. has an aviation workshop providing qualified helicopter maintenance in accordance with PART-145. Maintenance and administrative base is situated in Luleå at Kallax airport. The types that Westhelicopter INC are currently authorised to service are: Eurocopter AS 350 Base/Line Maintenance, Eurocopter EC 120 Base/Line Maintenance and Robinsson R44 Base/Line Maintenance.   The thesis work has been to make new maintenance programme for Westhelicopter INC. This maintenance programme will be used to follow-up the time of the components, service bulletins and ADs. Existing materials, as maintenance manuals and interviews with technical staff, was used to make more efficient maintenances programme. Work will be applied to all helicopters that Westhelicopter AB supplies.
245

Optimal control of a diesel engine with EGR and VGT

Welander, Markus, Olsson, Jonas January 2006 (has links)
To fulfill todays requirements on emissions from engines, SCANIA has developed an engine with EGR (Exhaust Gas Recirculation) and VGT (Variable Geometry Turbine). This gives two extra control signals to take into consideration. Open loop optimal control is used to investigate how these two actuators should be controlled to minimize emissions and fuel consumption. A cost function, consisting of the errors between the most important variables and their set points, has been used in the minimization. The variables are the torque, the EGR mass fraction, the oxygen/fuel ratio and the pumping losses. From studies of the two control signals in different transients in the engine, information of how to control the VGT and EGR in the optimal way is found. The result from the optimal control has been compared with a PID simulation and has showed a better way to control the signals. The mayor reason why the optimal control is better than a PID controller is the ability to use future values from the transients.
246

Model Based Evaluation of UEGO Performance and Sensitivity

Jakobsson, Thommy January 2006 (has links)
Closed loop fuel injection have been in use for two decades but it's not until the recent five years that the wide band lambda sensor have been utilized. The goal is to explain wide band and discrete lambda sensors in a simple but powerful way. Both sensors are modeled by simple mathematics and accounts for Oxygen, Hydrogen and Carbon monoxide influences. The focus is not just on the output from the sensors, but also on the underlying function. This means that all explanations are thorough and methodical. The function of a wide band lambda sensor is more complicated than a discrete type lambda sensor, therefore it's harder to get correct readings. The model of the wide band lambda sensor is used to evaluate different problems in preparation for the development of an observer. Several potential problem sources are tested and investigated, these include calibration error, pressure error, air leak error, gas sensitivity and fuel errors. To evaluate the potential problems and their ability to explain differences between actual lambda and sensor output, two sensors with differing outputs have been used. The final result is implemented in an ECU. The models indicate that the difference between the two sensors is most likely explained by different sensitivity for CO, O2 and H2. This can in turn have one or several explanations. It is suggested that different ability to pump oxygen, different nernst cells or even different controllers can cause this. The reason is not investigated further as this would require a very deep research on the two sensors. Because no usable explanation is found an observer that estimates the offset at stoichiometric conditions, where lambda equals one, is constructed. The observer uses the fact that the switch point of a discrete lambda sensor is insensitive to disturbances. The offset calculation is performed in real time on an ECU. Tools for calibration of the observer are also developed. With the observer the error for the two sensors is roughly halved over the whole spectrum and at stoichiometric conditions, which is the normal operation for an engine, the error was too small to measure. Although the wide band lambda sensor is a very complex sensor it is shown that it can be understood with simple mathematics and basic knowledge in chemistry. The developed model agrees well with the real sensor for steady state conditions. For transient conditions, however, the model needs to be refined further. The question why the two sensors differ is discussed but the true origin of the cause remains unsolved. The conclusion is that the error can be drastically reduced with just an offset. It is also shown that when building a lambda sensing device the controller is of equal importance as the sensor element itself. This is due to the sensitivity of surrounding factors that the controller must be able to handle. These effects are specially important for engines running at lambda not equal to 1, for example diesel engines.
247

Scaling techniques using CFD and wind tunnel measurements for use in aircraft design

Pettersson, Karl January 2006 (has links)
<p>This thesis deals with the problems of scaling aerodynamic data from wind tunnel conditions to free flight. The main challenges when this scaling should be performed is how the model support, wall interference and the potentially lower Reynolds number in the wind tunnel should be corrected.</p><p>Computational Fluid Dynamics (CFD) simulations have been performed on a modern transonic transport aircraft in order to reveal Reynolds number effects and how these should be scaled accurately. This investigation also examined how the European Transonic Wind tunnel (ETW) twin sting model support influences the flow over the aircraft. In order to further examine Reynolds number effects a MATLAB based code capable of extracting local boundary layer properties from structured and unstructured CFD calculations have been developed and validated against wind tunnel measurements. A general scaling methodology is presented.</p>
248

Sizing and Balance Module Development for Aircraft Conceptual Design

Peterson, Gustav January 2007 (has links)
This thesis work was done in order to improve the capabilities in a preliminary aircraft analysis program, DIBA, at Saab Aerosystems. The areas that this was done are in the sizing and balance. One sizing tool was developed in order to make a performance analysis with the DIBA generated geometry and customer and/or regulation based criteria. A balance diagram, a neutral point estimation function, a landing gear plot and a trim program was created in order to extend the weight and balance analysis. Results show that various aircraft both military and civil can be analyzed with good comparison to other analysis and reality. For example EXCEL implemented analysis and graphs over real aircrafts shown in the report.
249

Interface Damping: Characterization and Implementation

Nadampalli, Ravi Varma January 2012 (has links)
Material damping in a structure is well defined and documented. However, dissipation due to mechanical contact (surface contact) in a complex built-up structure is not as well represented, in particular in large scale noise and vibration simulations. The present work is dealing with the understanding of the physical behaviour of losses that take place at such complex interfaces. The objective is to investigate, if, these mechanical loss phenomena can be modelled using linear response simulation techniques and implemented using commercially available finite element software. In a first step, the losses at the interfaces were experimentally investigated using an experimental setup capable of in-vacuo conditions. Following this, the second step was aimed at different ways of representing the proposed boundary conditions in a linear response simulation of a built-up structure. Two different approaches were studied, one using a continuous surface approach and one using a discrete element method. / <p>QC 20120424</p>
250

Rotating Structure Modeling and Damping Measurements

Sun, Jia January 2011 (has links)
The structural damping is of importance to suppress the vibration amplitude of compressor blades rotating at high angular velocity under a high cycle impact. To avoid the appearance of the high cycle fatigue (HCF), damping materials may be applied to the compressor blades. To quantify the effect while using damping materials, a numerical tool needs to be developed for the damping prediction of a dynamic rotating blade. This thesis is divided into two parts: Paper A develops a dynamic model of a rotating blade and Paper B a damping structure model including measurements. In Paper A, a dynamic rotating blade model is developed by using a plate model at an arbitrary stagger angle. Hamilton’s principle is applied to derive a system of equations of motion and the corresponding boundary conditions. Numerical simulation is implemented to perform eigenfrequency analysis by the Extended Galerkin method. In addition, parametric analysis is performed with respect to rotation speed and stagger angle, respectively. Results show a good agreement with those of the finite element method. Finally, forced response analysis is determined for two cases; a point force and a distribution force, using a proportional damping model. In Paper B, unconstrained and constrained damping techniques are applied to increase the structural damping of the blades, including measurement and modeling results. Two specimens, titanium and stainless steel, are treated by aluminum oxide and epoxy coating material. Measurement results show that both treatments give damping increase, where aluminum oxide is more effective for damping improvement than the corresponding epoxy treatment. The unconstrained damping layer model is used to predict the total material damping of the combined structure as well as the material damping of coating layer. Furthermore, the constrained-layer model is used to optimize the damping configuration. Two compressor blades in titanium and stainless steel are tested in air and vacuum. One reason is being that the radiation loss factor increases the total damping comparing with that under vacuum condition. The calculation of radiation loss factor is performed to match the measurement data. Finally, increased material damping decreases peak stress and therefore increases the life time of the compressor blades. / <p>QC 20110311</p>

Page generated in 0.0481 seconds