• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 50
  • 14
  • 10
  • 10
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 208
  • 30
  • 27
  • 21
  • 21
  • 20
  • 19
  • 19
  • 17
  • 17
  • 15
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Entwicklung und Charakterisierung eines aktivierbaren CD95L-Fusionsproteins

Watermann, Iris January 2006 (has links)
Zugl.: Stuttgart, Univ., Diss., 2006
12

Der Einfluss von CD95, Fas auf Motorik, Lernfähigkeit, Regeneration und Apoptose nach Schädelhirntrauma

Berger, Martina January 2009 (has links)
Regensburg, Univ., Diss., 2010.
13

Fetal Alcohol Syndrome

Jaishankar, Gayatri 01 August 1995 (has links)
No description available.
14

Noggin overexpression inhibits eyelid opening by altering epidermal apoptosis and differentiation.

Sharov, A.A., Weiner, L., Sharova, T.Y., Siebenhaar, F., Atoyan, R., Reginato, A.M., McNamara, C.A., Funa, K., Gilchrest, B.A., Brissette, J.L., Botchkarev, Vladimir A. January 2003 (has links)
No / Contact of developing sensory organs with the external environment is established via the formation of openings in the skin. During eye development, eyelids first grow, fuse and finally reopen, thus providing access for visual information to the retina. Here, we show that eyelid opening is strongly inhibited in transgenic mice overexpressing the bone morphogenetic protein (BMP) antagonist noggin from the keratin 5 (K5) promoter in the epidermis. In wild-type mice, enhanced expression of the kinase-inactive form of BMPR-IB mediated by an adenovirus vector also inhibits eyelid opening. Noggin overexpression leads to reduction of apoptosis and retardation of cell differentiation in the eyelid epithelium, which is associated with downregulation of expression of the apoptotic receptors (Fas, p55 kDa TNFR), Id3 protein and keratinocyte differentiation markers (loricrin, involucrin). BMP-4, but not EGF or TGF-, accelerates opening of the eyelid explants isolated from K5-Noggin transgenic mice when cultured ex vivo. These data suggest that the BMP signaling pathway plays an important role in regulation of genetic programs of eyelid opening and skin remodeling during the final steps of eye morphogenesis.
15

The Wrong Solution to Fair Value Accounting: Does the Relaxation of Fair Value Accounting Improve Financial Reporting for Banks?

Suttle, John C., Jr. 01 January 2013 (has links)
The financial crisis of 2007-2008 sparked a debate over the usefulness of fair value accounting. Many banks and other financial institutions claim that the strict rules of fair value accounting exacerbated the financial crisis. To fix the problem of fair value accounting, FASB issued FAS 157-4, FAS 115-2 and FAS 124-2. These Staff Positions relax the rules for fair value accounting by providing entities more flexibility in fair value estimates and OTTI reporting. This study explores the merits of these changes to fair value accounting and analyzes whether they will improve banks’ financial reporting. First, I examine the role of fair value accounting in the recent financial crisis. Next, I evaluate whether these Staff Positions result in more useful information to investors and other decision makers. I find evidence that suggests that fair value accounting had a limited role in the financial crisis and did not contribute to banks’ financial burdens. These findings bring into question the purpose and necessity of FAS 157-4, FAS 115-2 and FAS 124-2. Furthermore, my analysis shows that these Staff Positions do not enhance the usefulness of information to decision makers. In fact, they appear to weaken the usefulness of financial information.
16

Roles of Fas in Neural Progenitor Cell Differentiation, Survival, and Immune-Cell Interactions

Knight, Julia 15 July 2011 (has links)
Multiple sclerosis (MS) is a leading cause of neurological disability in young adults. Although current treatments can reduce symptomology and relapse rate, they are unable to prevent the chronic neurodegeneration that occurs at later stages. MS pathology is mediated by complex interactions between invading immune cells, neurons, glia, and endogenous stores of neural progenitor cells (NPCs). Factors critical to NPC/immune cell communication as well as the survival, differentiation, and proliferation of NPCs are not well defined. Elucidation of these factors will allow for the advancement of NPC transplantation therapies as well as the identification of novel pharmacological targets. Fas – a member of the tumor necrosis superfamily of death receptors – has diverse, cell-specific functions and is a major modulator of autoregulation within the immune system. Although Fas is expressed by NPCs, its exact role in this cell type was previously unknown. To contribute to this body of knowledge, the experiments in this dissertation examined the role of the Fas receptor (Fas) and Fas ligand (FasL) in NPC survival, differentiation, and T-cell cross-talk in vitro and in vivo in experimental autoimmune encephalomyelitis (EAE; a well-established animal model of MS). Activation of Fas via FasL increased NPC survival by decreasing apoptosis (as opposed to increasing proliferation) in vitro. This decreased apoptosis correlates with upregulation of the inhibitor of apoptosis protein (IAP) Birc3. Further investigation into the importance of Fas in NPCs was accomplished by comparing wild-type and Fas-deficient (lpr) NPCs. Lpr NPCs exhibited decreased apoptosis, decreased proliferation, and increased differentiation to oligoprogenitor and neuronal lineages. These studies suggest the Fas system plays multifaceted roles in NPCs and that its exact functions are dependent on both functional Fas expression and presence or absence of FasL. To determine the role of Fas/FasL in neuroimmune cross-talk, co-cultures of wild-type or lpr NPCs with different T-cell subtypes (Th1, Th2, and Th17 cells) were performed. Th1 cells were the only subtype capable of inducing NPC apoptosis. Th1-mediated death was dose-dependent and was not mediated via Fas. On the other hand, NPCs were able to induce significant apoptosis in pro-inflammatory Th1 and Th17 cells without affecting anti-inflammatory Th2 cells. NPC-induced Th17 cell death was mediated via Fas. These data suggest NPCs can specifically target pro-inflammatory T-cells and can promote neuroprotection by inducing death of these proencephalogenic cells. Finally, intravenous injection of wild-type or lpr NPCs into EAE mice reduced clinical symptoms and CNS immune infiltrate to the same extent. Few NPCs enter the CNS, where they remain undifferentiated. This suggests the main mechanism through which NPCs produce beneficial results in EAE is via peripheral immunoregulation, which is not dependent on Fas expression. Overall, this dissertation elucidates the Fas system as an important modulator of NPC cell-fate and immunoregulatory capacity.
17

Étude de l'expression génique des molécules reliées à l'apoptose durant la maturation des cellules dendritiques : rôle pro-apoptotique de fas

Crabé, Sandrine January 2008 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
18

Molekulare Mechanismen der CD95-Aktivierung / Molecular mechanisms of CD95 activation

Lang, Isabell January 2012 (has links) (PDF)
Die Stimulation des CD95-Todesrezeptors durch seinen natürlichen membranständigen Li-ganden CD95L führt zur kontextabhängigen Aktivierung von sowohl apoptotischen als auch nicht-apoptotischen Signalwegen. Durch Proteolyse wird aus dem membranständigen CD95L löslicher trimerer CD95L freigesetzt. Die Bindung von löslichem trimerem CD95L an CD95 ist nicht ausreichend, um die CD95-Signaltransduktion effizient zu stimulieren. Die Fähigkeit von löslichen CD95L-Trimeren CD95-vermittelte Signalwege robust zu aktivieren kann jedoch durch Oligomerisierung und artifizielle Immobilisierung an eine Oberfläche drastisch gesteigert werden. In dieser Arbeit wurde zunächst bestätigt, dass nur oligomere CD95L-Varianten, die z.B. durch Antikörpervernetzung von N-terminal getaggten rekombinanten CD95L-Varianten oder durch eine gentechnisch erzwungene Hexamerisierung von CD95L-Molekülen erhalten wur-den, in der Lage sind, effizient apoptotische und nicht-apoptotische Signalwege zu aktivieren. Ferner zeigte sich dann, dass die Bindung von löslichen CD95L-Trimeren nicht ausreichend ist, um die Translokation von CD95-Molekülen in detergenzunlösliche „Lipid Raft“- Membrandomänen zu stimulieren. Die „Lipid Raft“-Translokation ist ein zentrales Ereignis bei der CD95-Aktivierung und vor allem für die Induktion der Apoptose bedeutsam. Dabei ist ein selbstverstärkender Prozess aus Caspase-8-Aktivierung und „Lipid Raft“-Assoziation des CD95 von Bedeutung. Um die Interaktion von CD95 und CD95L mit Hilfe von hoch sensitiven zellulären Bindungs-studien analysieren zu können, wurden in dieser Arbeit desweiteren CD95L-Fusionsproteine entwickelt und hergestellt, an welche N-terminal eine Gaussia princeps Luziferase (GpL)- Reporterdomäne gekoppelt ist. So konnte mit den GpL-CD95L-Fusionsproteinen gezeigt werden, dass die Oligomerisierung von CD95L-Trimeren keinen Effekt auf die Ligandenbele-gung des CD95 hat. Dies spricht dafür, dass die höhere spezifische Aktivität von oligomeri-sierten CD95L-Trimeren nicht auf einer Aviditäts-vermittelten Zunahme der apparenten Affi-nität beruht, sondern dies deutet darauf hin, dass die sekundäre Aggregation von sich initial bildenden trimeren CD95L-CD95-Komplexen eine entscheidende Rolle in der CD95-Aktivierung spielt. Durch Scatchard-Analysen zeigte sich ferner, dass trimerer CD95L mit mindestens zwei zellulären Bindungsstellen unterschiedlicher Affinität interagiert. Bindungs-studien mit löslichen monomeren und trimeren GpL-CD95-Rezeptoren an membranständigen CD95L, als auch Inhibitionsstudien ergaben, dass trimerer CD95 weitaus besser an CD95L bindet. Dies legt nahe, dass es sich bei den zuvor beobachteten hoch- und niederaffinen Bindungsstellen für CD95L um monomere bzw. prä-assemblierte CD95-Moleküle handelt. Die GpL-CD95L-Fusionsproteine wurden auch genutzt, um die CD95-Translokation in „Lipid Rafts“ zu analysieren. So wurde trimerer GpL-CD95L als „Tracer“ zur Markierung von inaktiven CD95-Molekülen eingesetzt. Nach Aktivierung der übrigen freien CD95-Moleküle mit hoch aktivem hexameren Fc-CD95L konnte eine Zunahme der inaktiven GpL-CD95L-markierten Rezeptoren in „Lipid Rafts“ beobachtet werden. Offensichtlich stimulieren also aktivierte CD95-Moleküle in „trans“ die Ko-Translokation inaktiver CD95-Rezeptoren in „Lipid Rafts“. Dies bestätigte sich auch in Experimenten mit Transfektanten, die einen chimären CD40-CD95-Rezeptor exprimieren. Letzterer ist nach Stimulation mit CD40L in der Lage, intrazellu-läre CD95-vermittelte Signalwege zu aktivieren. Die Aktivierung von CD95-assoziierten Sig-nalwegen durch Stimulation von endogenem CD95 in CD40-CD95-Transfektanten resultierte nun in der Ko-Translokation von unstimulierten CD40-CD95-Rezeptoren in „Lipid Rafts“. Vice versa zeigte sich die Ko-Translokation von endogenem CD95 nach spezifischer Aktivierung des chimären CD40-CD95-Rezeptors. Schlussendlich erwiesen sich eine funktionsfähige Todesdomäne und die Aktivierung der Caspase-8 als essentiell für die „Lipid Raft“-Assoziation von aktivierten CD95-Molekülen und auch für die durch diese Rezeptorspezies induzierte Ko-Translokation von inaktiven Rezeptoren in „Lipid Rafts“. / Membrane-bound CD95L activates the CD95 death receptor to induce context-dependent apoptotic and non-apoptotic signaling pathways. In contrast, soluble trimeric CD95L, which is released by proteolysis, is not sufficient to stimulate CD95-induced signaling. However, the ability of soluble CD95L trimers to activate robust CD95 mediated signaling pathways can be increased drastically by oligomerization and artificial immobilization on the cell surface. In this work, it has been confirmed that only the oligomeric CD95L-variants, produced by an-tibody crosslinking of N-terminal tagged recombinant CD95L-variants or by genetic engineer-ing-enforced formation of hexamers, are able to efficiently activate both apoptotic and non-apoptotic signaling pathways. Moreover, it has been shown that binding of soluble trimeric CD95L is not sufficient to stimulate translocation of CD95 molecules to the “lipid raft”-containing compartment of the cell membrane. This translocation of CD95 to “lipid rafts” is a pivotal event in CD95 activation and mainly meaningful, especially for induction of apoptosis. Thereby an auto-amplification-loop of caspase-8 activation and association of CD95 with “lipid rafts” is of importance. To analyze CD95-CD95L interactions, highly sensitive cellular binding studies using CD95L fusion proteins linked to the N-terminal Gaussia princeps luciferase (GpL) have been per-formed. With GpL-CD95L fusion proteins it has been demonstrated that oligomerization of CD95L trimers has no major effect on CD95 occupancy. Therefore higher specific activity of oligomerized CD95L trimers is not related to an avidity-driven increase in apparent affinity. This suggests that a process of secondary aggregation of the initially formed trimeric CD95L-CD95 complexes is crucial for CD95 activation. Furthermore, the data obtained from scat-chard analysis showed that trimeric CD95L interacts with at least two binding sites of different affinity. This was further examined by performing binding studies of soluble monomeric and trimeric GpL-CD95 receptors to membrane-bound CD95L and neutralization assays. It was observed that trimeric CD95 receptor can bind to CD95L much better. These results suggest that the high and low affinity binding sites concern to monomeric or rather pre-assembled CD95 molecules. Moreover, GpL-CD95L fusion proteins have been employed to analyze translocation of CD95 to “lipid rafts”. In these experiments, GpL-CD95L trimers were applied to “mark” inactive CD95 molecules. Upon activation of the remaining free CD95 molecules using highly active Fc-CD95L, an increased association of these inactive receptors with “lipid rafts” was observed. Apparently activated CD95 molecules stimulate in “trans” the co-translocation of inactive CD95 receptors to “lipid rafts”. This has also been confirmed in experiments with transfectants expressing chimeric CD40-CD95 receptors. These chimeric receptors are able to activate CD95-mediated signaling pathways after stimulation with CD40L. After stimulation of endogenous CD95 in CD40-CD95 transfectants the unstimulated chimeric CD40-CD95 receptors co-translocated to “lipid rafts”. Conversely, activation of CD95-associated pathways by specific stimulation of chimeric CD40-CD95 receptors resulted in co-translocation of the endogenous CD95. In conclusion, it has been shown that a functional death domain and caspase-8 activation turned out to be essential for both “lipid raft” association of signaling-active CD95 molecules and co-translocation of inactive CD95 receptors induced by active receptor species.
19

Mechanisms of alcohol-induced neuroteratology: an examination of the roles of fetal cerebral blood flow and hypoxia

Parnell, Scott Edward 17 February 2005 (has links)
Hypoxia (decreased tissue oxygen levels) has long been considered as a possible mechanism of alcohol-induced developmental deficits, yet research has not conclusively disproved this hypothesis, nor has it provided substantial evidence for a mechanism of developmental alcohol insults involving hypoxia. Previous research has shown that moderate acute doses of alcohol does not induce hypoxemia (decreased arterial oxygen levels), yet these same studies have shown that this same alcohol exposure does transiently decrease cerebral blood flow (CBF). This is significant because although developmental alcohol exposure did not result in hypoxemia, the decreases in CBF seen in these previous studies may induce hypoxia within the brain. Unfortunately, these experiments were only performed after acute doses of alcohol, so it is unknown if a more chronic or repeated alcohol exposure paradigm would have similar effects. The present study examined blood flow in the sheep fetus after repeated alcohol exposure in a bingelike paradigm throughout the third trimester. Additionally, this study examined the fetal neurovascular response to a subsequent infusion of alcohol after the repeated alcohol exposure. This latter experiment was designed to examine the hypothesis that alcohol exposure throughout the third trimester affects the normal responsiveness of the neurovasculature to alcohol (compared to previous research demonstrating acute alcohol-induced decreases in CBF). The results from the present experiments indicate that although few regions were significant, the majority of the regions (especially the brain regions) exhibited a trend for increases in blood flows after alcohol exposure. This phenomenon was especially prominent in the group receiving the lower dose of alcohol. Additionally, the data from this study demonstrated that after repeated alcohol exposures the near-term sheep fetus did not respond to a subsequent dose of alcohol in a similar manner seen in previous experiments when the acute alcohol exposure was administered in alcohol naïve animals. After the final alcohol exposure the subjects in this study had either no effect in terms of blood flow or an increase in CBF. This is opposite to previous observations which demonstrated reduced blood flow in numerous brain regions. The present experiments suggest that alcohol does not induce fetal hypoxia, but does negatively affect the normal neurovascular response to alcohol. This latter phenomenon could have negative consequences on future development of the brain.
20

Dietary effects of supplemental plant oils on growth, adipocity, related enzyme activity and fatty acid composition of juvenile cobia

Lin, Pei-Chen 15 August 2008 (has links)
This research studied the dietary effect of supplemental plant oils on growth, adiposity and lipid metabolism-related enzyme activity of juvenile cobia. The isonitrogenous and isoenergetic basal diet contained 15% crude lipid, 6% fish oil and 9% supplemental oils. The supplemental oils were varied among 5 dietary treatments, including fish oil (HUFA, n-3)(FO), perilla oil (18:3 n-3)(PE), safflower oil (18:2 n-6)(SA), olive oil (18:1 n-9)(OL), and palm oil (16:0)(PA). Results of the 10-wk feeding trial show that fish fed diet containing palm oil had the highest final weight, and was significant higher than fish fed SA diet. SA group had highest crude lipid concentration. OL group had the least crude protein concentration. PA group had the highest ash concentration. FO group had the highest crude protein and moisture content, the least crude lipid and ash content. Adipocyte density in various, tissues did not vary with time, except the ventral fat depot. Tissue adipocyte density of FO group was the least. Adipocyte density of PE group was higher than FO group, and its mean adipcoyte diameter in dorsal muscle was great than the other groups. Fatty acid synthase (FAS), as measured by specific activity, decreased with times in the PE group. Adipocyte density of SA group the highest of all groups, and its mean adipocyte diameter in dorsal muscle was also the greatest. Adipocyte density in the ventral fat depot of OL group was the highest, and its mean diameter in dorsal muscle was the smallest. Adipocyte density of PA group was only slightly lower than SA group. The tissue acid composition of the cobia was influenced by the supplemental plant oils. Tissue HUFA concentration and n-3/n-6 ratio was decreased, MUFA, PUFA and SAF composition was increased when the plant oils were supplemented. The results show that the supplementation of the plant oils could affect the density , size and tissue distribution of adipocytes, fatty acid synthesis pathway in the liver and tissue fatty acid composition. Feeding the cobia diet containing supplemental safflower or palm oil significantly increased density and cell size of adipocytes in the tissue of the cobia.

Page generated in 0.0513 seconds