• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 5
  • Tagged with
  • 20
  • 20
  • 14
  • 13
  • 13
  • 13
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spritzgießen und resultierende Verbundeigenschaften von flachsfaserverstärktem Polypropylen

Aurich, Torsten 16 July 2001 (has links) (PDF)
Die Arbeit behandelt am Beispiel von flachsfaserverstärktem Polypropylen die Verarbeitung von naturfaserverstärkten Thermoplasten im Spritzgießverfahren und die resultierenden Verbundeigenschaften. Im Grundlagenteil der Arbeit werden die Flachsfasern mit ihren besonderen chemischen und physikalischen Eigenschaften vorgestellt, die theoretischen Grundlagen zur Suspensionsrheologie, der Beschreibung von räumlichen Orientierungszuständen, zur Faser-Makrostruktur-Ausbildung und zum Spannungs-Verformungsverhalten von kurzfaserverstärkten Thermoplasten dargelegt. Phänomenologisch wird das rheologische Verhalten der flachsfasergefüllten thermoplastischen Schmelze charakterisiert. Weiterhin wird der Formfüllvorgang simuliert. Für die Bewegung der in der Schmelze mitgeschleppten Fasern werden die für konventionelle Kurzfasern gebräuchlichen Berechnungsansätze benutzt und deren Vorhersagegenauigkeit für flachsfaserverstärktes Polypropylen anhand experimenteller Ergebnisse beurteilt. Die resultierende Verbundsteifigkeit wird mit einem analytischen Modell unter Berücksichtigung der Orientierungssituation und Zuhilfenahme von mikromechanisch berechneten Faserkennwerten bestimmt. Abschließend wird der Einfluss technologischer und konstruktiver Parameter dargelegt.
2

Multikriterielle Simulation und Optimierung im Leichtbau

Kroll, Lothar, Ulke-Winter, Lars 10 July 2015 (has links) (PDF)
Das Hauptanliegen des Bundesexellenzclusters MERGE: Technologiefusion für multifunktionale Leichtbaustrukturen ist die Verwendung von prozesstauglichen Technologien zur resourceneffizienten Herstellung von Leichtbaustrukturen in Mischbauweise. In der Interactive Domain (IRD): Modelling, Integrative Simulation and Optimization des Cluster of Excellence „MERGE“ werden ganzheitliche und durchgängige Simulationsketten entwickelt, um das Werkstoffverhalten von unterschiedlichen Materialgruppen unter Berücksichtigung prozessbedingter und belastungsspezifischer Restriktionen aufeinander abzustimmen. Die Bauteileigenschaften und Randbedingungen bei der Herstellung der Hybridbauteile hängen dabei, neben den verwendeten Materialkombinationen (Kunststoffe, Faserverbunde, Metalle), in starkem Maße von den zugrundeliegenden Fertigungsprozessen ab. Insbesondere die multikriterielle Optimierung -- von der Herstellung bis zum belasteten Bauteil -- benötigt eine Vielzahl an aufwändigen Simulationen die ein effizientes Datenmanagement sowie verteilten Berechnungsumgebungen erfordern. / The main objective of the Cluster of Excellence “MERGE”: Merge Technologies for Multifunctional Lightweight Structures is the use of process technologies suitable for resource-efficient production of lightweight structures in composite design. In the Interactive Research Domain (IRD): Modelling, Simulation and Optimization of Cluster of Excellence "MERGE" holistic and integrated simulation chains are designed to match the material behavior of different groups of materials under consideration of process-related and load specific restrictions. The component properties and constraints in the production of hybrid components depend in addition to the used material combinations (fiber reinforced plastics and metals) largely on the underlying production process. In particular, the multicriteria optimization - from manufacturing process until the loaded lightweight structure -- requires a large number of complex simulations which require an efficient data management and distributed computing environments.
3

Glass and Jute fibers modified with CNT-based functional coatings for high performance composites

Tzounis, Lazaros 02 July 2014 (has links) (PDF)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale. Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces. The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.
4

Spritzgießen und resultierende Verbundeigenschaften von flachsfaserverstärktem Polypropylen

Aurich, Torsten 01 June 2001 (has links)
Die Arbeit behandelt am Beispiel von flachsfaserverstärktem Polypropylen die Verarbeitung von naturfaserverstärkten Thermoplasten im Spritzgießverfahren und die resultierenden Verbundeigenschaften. Im Grundlagenteil der Arbeit werden die Flachsfasern mit ihren besonderen chemischen und physikalischen Eigenschaften vorgestellt, die theoretischen Grundlagen zur Suspensionsrheologie, der Beschreibung von räumlichen Orientierungszuständen, zur Faser-Makrostruktur-Ausbildung und zum Spannungs-Verformungsverhalten von kurzfaserverstärkten Thermoplasten dargelegt. Phänomenologisch wird das rheologische Verhalten der flachsfasergefüllten thermoplastischen Schmelze charakterisiert. Weiterhin wird der Formfüllvorgang simuliert. Für die Bewegung der in der Schmelze mitgeschleppten Fasern werden die für konventionelle Kurzfasern gebräuchlichen Berechnungsansätze benutzt und deren Vorhersagegenauigkeit für flachsfaserverstärktes Polypropylen anhand experimenteller Ergebnisse beurteilt. Die resultierende Verbundsteifigkeit wird mit einem analytischen Modell unter Berücksichtigung der Orientierungssituation und Zuhilfenahme von mikromechanisch berechneten Faserkennwerten bestimmt. Abschließend wird der Einfluss technologischer und konstruktiver Parameter dargelegt.
5

Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers

Mobini, Sahba, Taghizadeh-Jahed, Masoud, Khanmohammadi, Manijeh, Moshiri, Ali, Naderi, Mohammad-Mehdi, Heidari-Vala, Hamed, Ashrafi Helan, Javad, Khanjani, Sayeh, Springer, Armin, Akhondi, Mohammad-Mehdi, Kazemnejad, Somaieh 11 October 2019 (has links)
Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation. In all scaffolds, a suitable interconnected porous structure for cell penetration was seen under scanning electron microscopy. Compressive tests revealed a functional relationship between fiber reinforcement and compressive modulus. In addition, the fiber/fibroin composite scaffolds support cell attachment and proliferation. On days 30 to 90 after subcutaneous implantation, the retrieved tissues were examined via gross morphology, histopathology, immunofluorescence staining and reverse transcription-polymerase chain reaction as shown in Figure 1. Results showed that embedding the silk fibers within the matrix enhances the biodegradability of the matrix resulting in replacement of the composite scaffolds with the fresh connective tissue. Fortification of the composites with degummed fibers not only regulates the degradation profile but also increases the mechanical performance of the scaffolds. This report also confirmed that pore size and structure play an important role in the degradation rate. In conclusion, the findings of the present study narrate key role of additional surface area in improving in vitro and in vivo biological properties of the scaffolds and suggest the potential ability of these fabricated composite scaffolds for connective tissue regeneration.
6

Multikriterielle Simulation und Optimierung im Leichtbau

Kroll, Lothar, Ulke-Winter, Lars 10 July 2015 (has links)
Das Hauptanliegen des Bundesexellenzclusters MERGE: Technologiefusion für multifunktionale Leichtbaustrukturen ist die Verwendung von prozesstauglichen Technologien zur resourceneffizienten Herstellung von Leichtbaustrukturen in Mischbauweise. In der Interactive Domain (IRD): Modelling, Integrative Simulation and Optimization des Cluster of Excellence „MERGE“ werden ganzheitliche und durchgängige Simulationsketten entwickelt, um das Werkstoffverhalten von unterschiedlichen Materialgruppen unter Berücksichtigung prozessbedingter und belastungsspezifischer Restriktionen aufeinander abzustimmen. Die Bauteileigenschaften und Randbedingungen bei der Herstellung der Hybridbauteile hängen dabei, neben den verwendeten Materialkombinationen (Kunststoffe, Faserverbunde, Metalle), in starkem Maße von den zugrundeliegenden Fertigungsprozessen ab. Insbesondere die multikriterielle Optimierung -- von der Herstellung bis zum belasteten Bauteil -- benötigt eine Vielzahl an aufwändigen Simulationen die ein effizientes Datenmanagement sowie verteilten Berechnungsumgebungen erfordern. / The main objective of the Cluster of Excellence “MERGE”: Merge Technologies for Multifunctional Lightweight Structures is the use of process technologies suitable for resource-efficient production of lightweight structures in composite design. In the Interactive Research Domain (IRD): Modelling, Simulation and Optimization of Cluster of Excellence "MERGE" holistic and integrated simulation chains are designed to match the material behavior of different groups of materials under consideration of process-related and load specific restrictions. The component properties and constraints in the production of hybrid components depend in addition to the used material combinations (fiber reinforced plastics and metals) largely on the underlying production process. In particular, the multicriteria optimization - from manufacturing process until the loaded lightweight structure -- requires a large number of complex simulations which require an efficient data management and distributed computing environments.
7

Formholzprofile als Ausgangsmaterialien für Design-Prozesse: Auswertung von Marktstudien und Durchführung von Experteninterviews

Müller, Josephine 17 April 2013 (has links) (PDF)
Innovationen führen zu volkswirtschaftlichem Wachstum. In dieser Diplomarbeit geht es um einen neuen, innovativen Holzwerkstoff: Faserverstärkte Holzrohrprofile. Diese wurden von Professor Peer Haller an der technischen Universität entwickelt. Die Arbeit untersucht das Marktpotential des neuen Baustoffes in 5 Branchen: Bauingenieurwesen und Architektur, Leichtbau, Windkraft, Masten und Rohrleitungen. Die Forschung findet anhand einer Literatursynthese und Experteninterviews statt. Die Marktanalyse wird mit dem 5 Kräfte Modell von Porter und den 5 Rahmenbedingungen von Baum, Coenenberg und Günther durchgeführt. Dabei handelt es sich bei den 5 Kräften um Lieferanten, Abnehmer, Substitute, Konkurrenz und Wettbewerber. Die untersuchten Rahmenbedingungen sind ökonomische, ökologische, gesellschaftliche, technologische und rechtliche. Sie ermitteln die Chancen und Risiken des neuen Produktes auf den verschiedenen Märkten. Zudem werden die aktuellen Marktsituationen dargestellt. Durch die Hinweise der Experten und die Ergebnisse der Literatur werden Vorschläge für die weitere Forschung in ökonomischer und technologischer Richtung abgeleitet. Empfehlungen für das weitere Vorgehen bei der Markteinführung in die 5 Brachen sind die Ergebnisse der Arbeit. / Innovations lead to economic growth. This diploma thesis deals with a new, innovative wood product: Fibre-reinforced Tiber Profiles. These where invented by Professor Peer Haller at the Technical University Dresden. The paper investigates the market potential of this new product in 5 industries: building and architecture, lightweight construction, wind power, towers and pipes. This is achieved trough literature synthesis and expert interviews. The market analysis is determined with the 5 Forces Model of Porter and the 5 framework conditions by Baum, Coenenberg and Günther. Thereby the forces suppliers, buyers, substitutes, new entrants and competition the markets with influence on the product are identified. As well as the economic, ecological, social, technological and legal frameworks which make out the opportunities and threats for the product on the different markets. Additionally the current situations of the different markets are presented. Further economic and technical research needs appear through the suggestions of the experts and the findings in the literature. Recommendations for further approach and handling of the product in the markets are the outcomes of this writing.
8

Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures

Klein, Mario, Podlesak , Frank, Höfer, Kevin, Seidlitz, Holger, Gerstenberger, Colin, Mayr, Peter, Kroll, Lothar 27 August 2015 (has links) (PDF)
Multi-material-design (MMD) is commonly realized through the combination of thin sheet metal and fibre reinforced plastics (FRP). To maximize the high lightweight potential of the material groups within a multi-material system as good as possible, a material-adapted and particularly fibre adjusted joining technology must be applied. The present paper focuses on two novel joining technologies, the Flow Drill Joining (FDJ) method and Spin-Blind-Riveting (SBR), which were developed for joining heavy-duty metal/composite hybrids. Tests were carried out with material combinations which are significant for lightweight constructions such as aluminium (AA5083) and carbon fibre-reinforced polyamide in sheet thickness of 1.8 mm. The mechanical testing and manufacturing of those multi-material joints was investigated.
9

Ultrasonic Spot Welding of Thin Walled Fibre-Reinforced Thermoplastics

Tutunjian, Shahan 28 July 2021 (has links)
Das Ultraschall-Punktschweißen von faserverstärkten thermoplastischen Kunststoffen hat in der letzten Zeit bei Forschern in der Luftfahrt- und Automobilindustrie großes Interesse hervorgerufen. Es bietet eine effiziente Lösung zum Verbinden großer thermoplastischer Verbundbauteile durch Punktschweißen mit einem hohen Automatisierungsgrad. In der vorliegenden Arbeit wurde eine neue Technik zum Fokussieren der Ultraschallschwingungsenergie an der gewünschten Fügestelle zwischen zwei Fügepartnern aus thermoplastischen Verbundlaminaten untersucht. Bei diesem untersuchten Verfahren waren keine zusätzlichen Energierichtungsgeber zwischen den Fügepartnern erforderlich, um die Vibrationsenergie zu fokussieren. Es wurde festgestellt, dass es durch Schweißen der Laminate zwischen einer Sonotrode und einem Amboss möglich war, eine lokalisierte Wärme durch Reibung zu erzeugen in dem die Sonotrode eine größere Kontaktfläche mit dem Laminat als mit dem Amboss aufwies. In der Anfangsphase des Schweißens wurden die Grenzflächenschichten durch die reibungsverursachte Erwärmung abgeschwächt. Folglich zentrierte sich die zyklische Verformung in diesen abgeschwächten Grenzflächen. Die Annahme des Vorhandenseins der Reibung und ihres Einflusses auf die Wärmeerzeugung wurde mittels mechanischer FEM-Analyse untersucht. Die mikroskopische Analyse des Schweißpunktes lieferte schließlich den Beweis für die Schmelzauslösung an einem Ring um den Schweißpunkt und das anschließende Punktwachstum. Um die räumliche Verteilung der Temperatur und ihre zeitliche Entwicklung in der Schweißzone während des Ultraschallschweißprozesses besser zu verstehen, wurde das thermische Problem numerisch modelliert. Zur Verifizierung der mathematischen Modelle wurden die berechneten Zeitverläufe der Temperatur im Schweißpunktzentrum mit den experimentell ermittelten Werten unter vergleichbaren Bedingungen gegenübergestellt. Es wurde festgestellt, dass nach einer bestimmten Schweißzeit die Temperatur im Schweißzentrum plötzlich anstieg und das Polymer an der Schweißstelle überhitzt und die Zersetzung begann. Es wurde beobachtet, dass der Zeitverlauf der verbrauchten Leistungskurve durch das Schweißgerät einem ähnlichen Muster folgte, wie der Zeitverlauf der Temperatur in der Schweißpunktmitte. Basierend auf dieser Beobachtung wurde ein Steuerungssystem entwickelt. Die zeitliche Ableitung der Schweißleistung wurde in Echtzeit überwacht. Sobald ein kritischer Wert überschritten wurde, wurde die Ultraschallschwingungsamplitude aktiv durch einen Mikrocontroller eingestellt. Bei diesem Ansatz wurde die Temperatur im Schweißpunkt indirekt gesteuert, um während der gesamten Schweißdauer in einem optimalen Bereich zu bleiben. Die Ergebnisse des gesteuerten Schweißprozesses wurden mittels Temperaturmessungen und Computertomographie bewertet. Aus der Studie wurde der Schluss gezogen, dass das leistungsgesteuerte Ultraschall-Punktschweißverfahren eine effiziente und stabile Methode zum automatischen Verbinden von faserverstärkten thermoplastischen Teilen ist.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix / The ultrasonic spot welding of fibre-reinforced thermoplastic composites has recently received strong interest among researchers mainly in the fields of aerospace and automotive industries. It offers an efficient solution to join large thermoplastic composite parts through the spot welding approach with a high level of automation. In this study, a new technique for focusing the ultrasonic vibration energy at the desired spot between two mating thermoplastic composite laminates was investigated. In this method, no additional energy directing protrusions between the weldments were required to focus the vibration energy. It was found that by welding the laminates amid an ultrasonic sonotrode and an anvil in which the prior had a larger contact surface with the laminate as the latter, it was possible to generate a localised frictional heating. In the initial phase of the welding, the frictional heating softened the interfacial layers and thus caused the focusing of the strain energy in the weld spot centre. The assumption for the presence of the friction and its influence on the heat generation was investigated by means of finite element method analysis. Microscopic analysis of the weld spot delivered the proof for the melt initiation at a ring around the weld spot and subsequent inwards growth of the weld spot. In order to gain a better understanding of the temperature spatial distribution and its temporal development in the weld zone during the ultrasonic welding process, the thermal problem was analysed using the explicit finite difference method. The mathematical model was verified through a comparison between the calculated temperature curves and the experimentally obtained counterparts. It was found that after a certain weld duration the temperature in the weld centre underwent a sudden increase and caused the overheating and decomposition of the polymer in the weld spot. It was observed that the time trace of the consumed power curve by the welder followed a similar pattern as the time trace of the temperature in the weld spot centre. Based on this observation, a control system was developed accordingly. The time derivative of the weld power was monitored in real time and as soon as it exceeded a critical value, the ultrasonic vibration amplitude was actively adjusted through a microcontroller. In this approach, the temperature in the weld spot was indirectly controlled to remain within an adequate range throughout the welding duration. The results of the controlled welding process were evaluated by means of temperature measurements and computed tomography scans. It was concluded from the study that the power-controlled differential ultrasonic spot welding process could be an efficient method to fusion bond the fibre-reinforced thermoplastic parts in an automated manner.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix
10

Glass and Jute fibers modified with CNT-based functional coatings for high performance composites

Tzounis, Lazaros 16 May 2014 (has links)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale. Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces. The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.

Page generated in 0.1286 seconds