1 |
Comparison of methods applied to job matching based on soft skillsElm, Emilia January 2020 (has links)
The expression ''Hire for attitude, train for skills'' is used as a motive to create a matching program where companies and job seekers' soft qualities are measured and compared against each other. Are there better or worse methods for this purpose, and how do they compare with each other? By associating soft qualities with companies and job seekers, it is possible to generate a value for how well they match. Therefore, data has been collected on several companies and job seekers. Their associated qualities are then translated into numerical vectors that can be used for matching purposes, where vectors closer together are more equal than vectors with greater distances. When it comes to analyzing and comparing the qualities, several methods have been used and compared with a subsequent discussion about their suitability. One consequence of the lack of a proper standard for presenting the qualities of companies and job seekers is that the data is messy and varied. An expected conclusion from the result is that the most flexible method is the one that generates the most accurate results.
|
2 |
Software Requirements Classification Using Word Embeddings and Convolutional Neural NetworksFong, Vivian Lin 01 June 2018 (has links) (PDF)
Software requirements classification, the practice of categorizing requirements by their type or purpose, can improve organization and transparency in the requirements engineering process and thus promote requirement fulfillment and software project completion. Requirements classification automation is a prominent area of research as automation can alleviate the tediousness of manual labeling and loosen its necessity for domain-expertise.
This thesis explores the application of deep learning techniques on software requirements classification, specifically the use of word embeddings for document representation when training a convolutional neural network (CNN). As past research endeavors mainly utilize information retrieval and traditional machine learning techniques, we entertain the potential of deep learning on this particular task. With the support of learning libraries such as TensorFlow and Scikit-Learn and word embedding models such as word2vec and fastText, we build a Python system that trains and validates configurations of Naïve Bayes and CNN requirements classifiers. Applying our system to a suite of experiments on two well-studied requirements datasets, we recreate or establish the Naïve Bayes baselines and evaluate the impact of CNNs equipped with word embeddings trained from scratch versus word embeddings pre-trained on Big Data.
|
3 |
An analysis of hierarchical text classification using word embeddingsStein, Roger Alan 28 March 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2019-03-07T14:41:05Z
No. of bitstreams: 1
Roger Alan Stein_.pdf: 476239 bytes, checksum: a87a32ffe84d0e5d7a882e0db7b03847 (MD5) / Made available in DSpace on 2019-03-07T14:41:05Z (GMT). No. of bitstreams: 1
Roger Alan Stein_.pdf: 476239 bytes, checksum: a87a32ffe84d0e5d7a882e0db7b03847 (MD5)
Previous issue date: 2018-03-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Efficient distributed numerical word representation models (word embeddings) combined with modern machine learning algorithms have recently yielded considerable improvement on automatic document classification tasks. However, the effectiveness of such techniques has
not been assessed for the hierarchical text classification (HTC) yet. This study investigates application of those models and algorithms on this specific problem by means of experimentation and analysis. Classification models were trained with prominent machine learning algorithm implementations—fastText, XGBoost, and Keras’ CNN—and noticeable word embeddings generation methods—GloVe, word2vec, and fastText—with publicly available data and evaluated them with measures specifically appropriate for the hierarchical context. FastText achieved an LCAF1 of 0.871 on a single-labeled version of the RCV1 dataset. The results analysis indicates that using word embeddings is a very promising approach for HTC. / Modelos eficientes de representação numérica textual (word embeddings) combinados com algoritmos modernos de aprendizado de máquina têm recentemente produzido uma melhoria considerável em tarefas de classificação automática de documentos. Contudo, a efetividade de tais técnicas ainda não foi avaliada com relação à classificação hierárquica de texto. Este estudo investiga a aplicação daqueles modelos e algoritmos neste problema em específico através de experimentação e análise. Modelos de classificação foram treinados usando implementações proeminentes de algoritmos de aprendizado de máquina—fastText, XGBoost e CNN (Keras)— e notórios métodos de geração de word embeddings—GloVe, word2vec e fastText—com dados disponíveis publicamente e avaliados usando métricas especificamente adequadas ao contexto hierárquico. Nesses experimentos, fastText alcançou um LCAF1 de 0,871 usando uma versão da base de dados RCV1 com apenas uma categoria por tupla. A análise dos resultados indica que a utilização de word embeddings é uma abordagem muito promissora para classificação hierárquica de texto.
|
4 |
Descriptive Music Search With Domain-Specific Word Embeddings / Deskriptiv musiksökning med domänspecifika ordinbäddningarLiu, Alva January 2019 (has links)
Descriptive search is a type of exploratory search that allows users to search for content by providing descriptors. Instead of having a specific target in mind, the user looks for a recommendation of items that matches the given descriptors. However in the music domain, descriptive words do not necessarily have the same semantic meaning as they have in a generic text corpus. In this study, we investigate if we can train a shallow neural model on playlist data for descriptive music search, and if the model can capture music-specific word semantics. We carry out three experiments to evaluate our model. The first and the second experiments evaluate if the model can predict tracks that are relevant to given search queries, and the third experiment evaluates whether the model successfully captures domain-specific word semantics. From our experiments, we conclude that our model trained on playlist data indeed can capture music-specific word semantics and generate reasonable track predictions. For future work, we suggest to explore possibilities to re-rank the top results retrieved by the model and diversify and/or personalize the ordering of the results. / Deskriptiv sökning är en typ av utforskande informationshämtning där användare söker efter material med hjälp av beskrivande sökord. Istället för att ange namnet på ett objekt i söksträngen så kan användaren med ord beskriva objekt som efterfrågas. I ett musiksammanhang har dock många beskrivande ord inte samma betydelse som de har i ett generellt sammanhang. Vi undersöker därför i vår studie om vi kan träna ett grunt neuralt nätverk med spellistsdata för deskriptiv musiksökning, och om modellen kan lära sig musik-specifika betydelser av ord. Vi utför totalt tre olika experiment för att utvärdera modellen. De första två experimenten undersöker om modellen kan föreslå relevanta låtar givet beskrivande söksträngar och det sista experimentet undersöker om modellen fångar domän-specifika betydelser av sökorden. Resultaten från våra experiment tyder på att modellen lyckas fånga musik-specifika språkmönster och kan föreslå rimliga låtar för deskriptiva söksträngar. För att göra modellen mer användningsbar föreslår vi att undersöka möjligheterna att omranka toppresultaten från modellen, och diversifiera samt personalisera ordningen av resultaten efter individuella användare.
|
5 |
Software Issue Time Estimation With Natural Language Processing and Machine Learning / Tidsuppskattning för mjukvaruärenden med språkteknologi och maskininlärningHyberg, Martin January 2021 (has links)
Time estimation for software issues is crucial to planning projects. Developers and experts have for many decades tried to estimate time requirements for issues as accurately as possible. The methods that are used today are often time-consuming and complex. This thesis investigates if the time estimation process can be done with natural language processing and machine learning. Three different word embeddings were used to represent the free text description, bag-of-words with tf-idf weighing, word2Vec and fastText. The different word embeddings were then fed into two types of machine learning approaches, classification and regression. The classification was binary and can be formulated as will the issue take more than three hours?. The goal of the regression problem was to predict an actual value for the time that the issue would take to complete. The classification models performance were measured with an F1-score, and the regression model was measured with an R2-score. The best F1- score for classification was 0.748 and was achieved with the word2Vec word embedding and an SVM classifier. The best score for the regression analysis was achieved with the bag-of-words word embedding, which achieved an R2- score of 0.380. Further evaluation of the results and a comparison to actual estimates made by the company show that humans only performs slightly better than the models given the binary classification defined above. The F1-score of the employees was 0.792, a difference of just 0.044 from the best F1-score made by the models. This thesis concludes that the models are not good enough to use in a professional setting. An F1-score of 0.748 could be used in other settings, but the classification question in this problem is too broad to be used for a real project. The results for the regression is also too low to be of any valuable use. / Tidsuppskattning för programvaruärenden är en avgörande del för planering av projekt. Utvecklare och experter har i många årtionden försökt uppskatta tiden ett ärende kommer ta så exakt som möjligt. Metoderna som används idag är ofta tidskrävande och komplexa. Denna avhandling undersöker om tidsuppskattningsprocessen kan göras med hjälp av språkteknologi och maskininlärning. De flesta programvaruärenden har en fritextbeskrivning av vad som är fel eller behöver läggas till. Tre olika ordinbäddningar användes för att representera fritextbeskrivningen, bag-of-word med tf-idf-viktning, word2Vec och fastText. De olika ordinbäddningarna matades sedan in i två typer av maskininlärningsmetoder, klassificering och regression. Klassificeringen var binär och frågan kan formuleras som tar ärendet mer än tre timmar?. Målet med regressionsproblemet var att förutsäga ett faktiskt värde för den tid som frågan skulle ta att slutföra. Klassificeringsmodellens prestanda mättes med en F1-poäng och regressionsmodellen mättes med en R2-poäng. Den bästa F1-poängen för klassificering var 0.748 och uppnåddes med en word2Vec-ordinbäddning och en SVM-klassificeringsmodell. Den bästa poängen för regressionsanalysen uppnåddes med en bag-of-words-inbäddning, som uppnådde en R2-poäng på 0.380. Vidare undersökning av resultaten och en jämförelse av faktiskta tidsestimat som gjorts av företaget visar att människor bara är lite bättre än modellerna givet klassificeringsfrågan beskriven ovan. F1-poängen för de anställda var 0.792, bara 0.044 bättre än det bästa F1-poängen för modellerna. Slutsatsen för denna avhandling är att modellerna inte är tillräckligt bra för att användas i en professionell miljö. En F1-poäng på 0.748 kan användas i andra situationer, men klassificeringsfrågan i detta problem är för bred för att användas för ett riktigt projekt. Resultatet för regressionen är också för lågt för att vara till någon värdefull användning.
|
6 |
Získavanie a analýza dát pre oblasť crowdfundinguKoštial, Martin January 2019 (has links)
The thesis deals with data acquisition from crowdfunding and their analysis. The theoretical part is focused on the description of available technologies and algorithms for data analysis. In the practical part the data collection is realized. Data mining and text mining algorithms are applied in this section for data.
|
7 |
Evaluating and comparing different key phrase-based web scraping methods for training domain-specific fasttext models / Utvärdering och jämförelse av olika nyckelfrasbaserade webbskrapningsmetoder för att träna domänspecifika fasttextmodellerBook, Love January 2023 (has links)
The demand for automation of simple tasks is constantly increasing. While some tasks are easy to automate because the logic is fixed and the process is streamlined, other tasks are harder because the performance of the task is heavily reliant on the judgment of a human expert. Matching a consultant to an offer from a client is one such task, in which case the expert is either a manager to the consultants or someone within HR at the company. One way to approach this task is to model the specific domain of interest using natural language processing. If we can capture the relationships between relevant skills and phrases within the specific domain, we could potentially use the resulting embeddings in a consultant to offer matching scheme. In this paper, we propose a key phrase-based web scraping approach to collect the data we need for a domain-specific corpus. To retrieve the key phrases needed as prompts for web scraping, we propose using the transformer-based library KeyBERT on limited domain-specific in house data belonging to the consultant firm B3 Indes, in order to retrieve the most important phrases in their respective contexts. Facebook's Word2vec based language model fasttext is then used on the processed corpus to create the fixed word embeddings. We also investigate numerous different approaches for selecting the right key phrases for web scraping in a human similarity comparison scheme, as well as comparisons to a larger pretrained general domain fasttext model. We show that utilizing key phrases for a domain-specific fasttext model could be beneficial compared to using a larger pretrained model. The results are not consistently conclusive under the current analytical framework. The results also indicate that KeyBERT is beneficial when selecting the key phrases compared to the randomized sampling of relevant phrases; however, the results are not conclusive. / Efterfrågan för automatisering av enkla uppgifter efterfrågas alltmer. Medan vissa uppgifter är lätta att automatisera eftersom logiken är fast och processen är tydlig, är andra svårare eftersom utförandet av uppgiften starkt beror på en människas expertis. Att matcha en konsult till ett erbjudande från en klient är en sådan uppgift, där experten är antingen en chef för konsulterna eller någon inom HR på företaget. En metod för att hantera denna uppgift är att modellera det specifika området av intresse med hjälp av maskininlärningsbaserad språkteknologi. Om vi kan fånga relationerna mellan relevanta färdigheter och fraser inom det specifika området, skulle vi potentiellt kunna använda de resulterande inbäddningarna i ett matchningsprocess mellan konsulter och uppdrag. I denna rapport föreslås en nyckelordsbaserad webbskrapnings-metod för att samla in data som behövs för ett domänspecifikt korpus. För att hämta de nyckelord som behövs som input för webbskrapning, föreslår vi att använda transformator-baserade biblioteket KeyBERT på begränsad domänspecifik data från konsultbolaget B3 Indes, detta för att hämta de viktigaste fraserna i deras respektive sammanhang. Sedan används Facebooks Word2vec baserade språkmodell fasttext på det bearbetade korpuset för att skapa statiska inbäddningar. Vi undersöker också olika metoder för att välja rätt nyckelord för webbskrapning i en likhets-jämnförelse mot mänskliga experter, samt jämförelser med en större förtränad fasttext-modell som inte är domänspecifik. Vi visar att användning av nyckelord för webbskrapning för träning av en domänspecifik fasttext-modell skulle kunna vara fördelaktigt jämnfört med en förtränad modell, men resutaten är inte konsekvent signifikanta enligt det begränsade analytiska ramverket. Resultaten indikerar också att KeyBERT är fördelaktigt vid valet av nyckelord jämfört med slumpmässigt urval av relevanta fraser, men dessa resultat är inte heller helt entydiga.
|
8 |
Evaluation of Approaches for Representation and Sentiment of Customer Reviews / Utvärdering av tillvägagångssätt för representation och uppfattning om kundrecensionerGiorgis, Stavros January 2021 (has links)
Classification of sentiment on customer reviews is a real-world application for many companies that offer text analytics and opinion extraction on customer reviews on different domains such as consumer electronics, hotels, restaurants, and car rental agencies. Natural Language Processing’s latest progress has seen the development of many new state-of-the-art approaches for representing the meaning of sentences, phrases, and words in the text using vector space models, so-called embeddings. In this thesis, we evaluated the most current and most popular text representation techniques against traditional methods as a baseline. The evaluation dataset consists of customer reviews from different domains with different lengths used by a text analysis company. Through a train dataset exploration, we evaluated which datasets were the most suitable for this specific task. Furthermore, we explored different techniques that could be used to alter a language model’s decisions without retraining it. Finally, all the methods were evaluated against their time performance and the resource requirements to present an overall experimental assessment that could potentially help the company decide which is the most appropriate technique to replace its system in a production environment. / Klassificeringen av attityd och känsloläge i kundrecensioner är en tillämpning med praktiskt värde för flera företag i marknadsanalysbranschen. Aktuell forskning i språkteknologi har etablerat vektorrum som standardrepresentation för ord, fraser och yttranden, så kallade embeddings. Denna uppsats utvärderar den senaste tidens mest framgångsrika textrepresentationsmodeller jämfört med mer traditionella vektorrum. Utvärdering görs genom att jämföra automatiska analyser med mänskliga bedömningar för kundrecensioner av varierande längd från olika domäner tillhandahållna av ett textanalysföretag. Inom ramen för studien har olika testmängder jämförts och olika sätt att modifera en språkmodells klassficering utan om träning. Alla modeller har också jämförts med avseende på resurs- och tidsåtgång för träning för att hjälpa uppdragsgivaren fatta beslut om vilken teknik som utgör den mest ändamålsenliga utvecklingsvägen för dess driftsatta system.
|
9 |
Distributionella representationer av ord för effektiv informationssökning : Algoritmer för sökning i kundsupportforum / Distributional Representations of Words for Effective Information Retrieval : Information Retrieval in Customer Support ForumsLachmann, Tim, Sabel, Johan January 2017 (has links)
I takt med att informationsmängden ökar i samhället ställs högre krav på mer förfinade metoder för sökning och hantering av information. Att utvinna relevant data från företagsinterna system blir en mer komplex uppgift då större informationsmängder måste hanteras och mycket kommunikation förflyttas till digitala plattformar. Metoder för vektorbaserad ordinbäddning har under senare år gjort stora framsteg; i synnerhet visade Google 2013 banbrytande resultat med modellen Word2vec och överträffade äldre metoder. Vi implementerar en sökmotor som utnyttjar ordinbäddningar baserade på Word2vec och liknande modeller, avsedd att användas på IT-företaget Kundo och för produkten Kundo Forum. Resultaten visar på potential för informationssökning med markant bättre täckning utan minskad precision. Kopplat till huvudområdet informationssökning genomförs också en analys av vilka implikationer en förbättrad sökmotor har ur ett marknads- och produktutvecklingsperspektiv. / As the abundance of information in society increases, so does the need for more sophisticated methods of information retrieval. Extracting information from internal systems becomes a more complex task when handling larger amounts of information and when more communications are transferred to digital platforms. Recent years methods for word embedding in vector space have gained traction. In 2013 Google sent ripples across the field of Natural Language Processing with a new method called Word2vec, significantly outperforming former practices. Among different established methods for information retrieval, we implement a retrieval method utilizing Word2vec and related methods of word embedding for the search engine at IT company Kundo and their product Kundo Forum. We demonstrate the potential to improve information retrieval recall by a significant margin without diminishing precision. Coupled with the primary subject of information retrieval we also investigate potential market and product development implications related to a different kind of search engine.
|
10 |
Počítač jako inteligentní spoluhráč ve slovně-asociační hře Krycí jména / Computer as an Intelligent Partner in the Word-Association Game CodenamesObrtlík, Petr January 2018 (has links)
This thesis deals with associations between words. Describes the design and implementation of a system that can represent a human in the word-association game Codenames. The system uses the Gensim and FastText libraries to create semantic models. The relationship between words is taught by the analysis of the text corpus CWC-2011.
|
Page generated in 0.0486 seconds