• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 99
  • 82
  • 68
  • 23
  • 12
  • 7
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 731
  • 291
  • 146
  • 79
  • 72
  • 57
  • 49
  • 48
  • 46
  • 45
  • 40
  • 40
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

ADVANCED FAULT AREA IDENTIFICATION AND FAULT LOCATION FOR TRANSMISSION AND DISTRIBUTION SYSTEMS

Fan, Wen 01 January 2019 (has links)
Fault location reveals the exact information needed for utility crews to timely and promptly perform maintenance and system restoration. Therefore, accurate fault location is a key function in reducing outage time and enhancing power system reliability. Modern power systems are witnessing a trend of integrating more distributed generations (DG) into the grid. DG power outputs may be intermittent and can no longer be treated as constants in fault location method development. DG modeling is also difficult for fault location purpose. Moreover, most existing fault location methods are not applicable to simultaneous faults. To solve the challenges, this dissertation proposes three impedance-based fault location algorithms to pinpoint simultaneous faults for power transmission systems and distribution systems with high penetration of DGs. The proposed fault location algorithms utilize the voltage and/or current phasors that are captured by phasor measurement units. Bus impedance matrix technique is harnessed to establish the relationship between the measurements and unknown simultaneous fault locations. The distinct features of the proposed algorithms are that no fault types and fault resistances are needed to determine the fault locations. In particular, Type I and Type III algorithms do not need the information of source impedances and prefault measurements to locate the faults. Moreover, the effects of shunt capacitance are fully considered to improve fault location accuracy. The proposed algorithms for distribution systems are validated by evaluation studies using Matlab and Simulink SimPowerSystems on a 21 bus distribution system and the modified IEEE 34 node test system. Type II fault location algorithm for transmission systems is applicable to untransposed lines and is validated by simulation studies using EMTP on a 27 bus transmission system. Fault area identification method is proposed to reduce the number of line segments to be examined for fault location. In addition, an optimal fault location method that can identify possible bad measurement is proposed for enhanced fault location estimate. Evaluation studies show that the optimal fault location method is accurate and effective. The proposed algorithms can be integrated into the existing energy management system for enhanced fault management capability for power systems.
292

The structural controls of the Vale Rhinehart Buttes complex, Vale KGRA, Malheur County, Oregon

Doerr, John Timothy 01 January 1986 (has links)
The Vale KGRA is characterized by high heat flow, two to five times higher than the worldwide average, and by numerous hot springs. The hot springs are aligned along faults. This phenomena is typical of a Basin and Range type geothermal system. The hot geothermal fluids migrate upward along the more permeable, fault planes. The rocks exposed in the Vale area are the Pliocene Chalk Butte formation and the Pleistocene beds of Captain Keeney Pass. Both units are composed of volcaniclastic siltstones, sandstones and conglomerates. The units are differentiated by color, texture and degree of lithification. About 200 meters of the Chalk Butte formation and 100 meters of the beds of Captain Keeney Pass are exposed in the area. Silicification is wide spread in the rocks of the Chalk Butte formation.
293

Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching

Hornsby, Kristofer Tyler 08 September 2017 (has links)
The Meers Fault (Oklahoma) is one of few seismogenic structures with Holocene surface expression in the stable continental region of North America. Only the ~37 km-long southeastern section of the ~55 km long Meers Fault is interpreted to be Holocene-active. The ~17 km-long northwestern section is considered to be Quaternary-active (pre-Holocene); however, its low-relief geomorphic expression and anthropogenic alteration have presented difficulties in evaluating the fault length and style of Holocene deformation. We reevaluate surface expression and earthquake timing of the northwestern portion of the Meers Fault to improve fault characterization, earthquake rupture models, and seismic hazard evaluations based on fault length. We use a combination of airborne lidar (0.5--2 m-resolution), historical aerial photos, and new balloon-based photogrammetric (Structure from Motion) topography (0.25--0.5 m-resolution) collected in this study to analyze and characterize the fault scarp and local fault zone geomorphology. In the northwest, complex surface deformation includes fault splays, a left step, subtle monoclinal warping, and a minor change in fault strike. The fault is evident in the landscape as linear escarpments, incised channels on the up-thrown side of the scarp, and closed depressions on the downthrown side. I use topographic profiles, measured perpendicular to the fault scarp to show that the northwest scarp is characterized by decimeter surface offsets. Where the fault traverses the Post Oak Conglomerate the fault zone width rarely exceeds 25 m, in the Hennessey Shale I document an increase in fault zone width with deformation occurring over 20 m to 115 m. I further examined the northwest section of the fault in a paleoseismic excavation where weathered Permian Hennessey Shale and a ~1--2 m-thick veneer of Holocene alluvial deposits have been folded and warped during three surface-folding earthquakes. In an adjacent stream exposure these units are also faulted near the ground surface. Paleoearthquake age modeling (Oxcal) constrained by accelerated mass spectrometry (AMS) dating of detrital charcoal and optically stimulated luminescence (OSL) dating of sandy alluvial beds indicates two earthquakes occurred since ~6152-5550 cal. years BP and one possibly older event along the erosional unconformity along the Hennessey Shale bedrock. This analysis lengthens the Holocene extent of the Meers Fault by ~6 km, to ~43 km, and extends the paleoseismic record of the Meers Fault to ~9598 cal. years BP. These data will improve fault-rupture and earthquake recurrence models used for seismic hazard analysis of the Meers Fault.
294

Fault Classification and Location Identification on Electrical Transmission Network Based on Machine Learning Methods

Venkatesh, Vidya 01 January 2018 (has links)
Power transmission network is the most important link in the country’s energy system as they carry large amounts of power at high voltages from generators to substations. Modern power system is a complex network and requires high-speed, precise, and reliable protective system. Faults in power system are unavoidable and overhead transmission line faults are generally higher compare to other major components. They not only affect the reliability of the system but also cause widespread impact on the end users. Additionally, the complexity of protecting transmission line configurations increases with as the configurations get more complex. Therefore, prediction of faults (type and location) with high accuracy increases the operational stability and reliability of the power system and helps to avoid huge power failure. Furthermore, proper operation of the protective relays requires the correct determination of the fault type as quickly as possible (e.g., reclosing relays). With advent of smart grid, digital technology is implemented allowing deployment of sensors along the transmission lines which can collect live fault data as they contain useful information which can be used for analyzing disturbances that occur in transmission lines. In this thesis, application of machine learning algorithms for fault classification and location identification on the transmission line has been explored. They have ability to “learn” from the data without explicitly programmed and can independently adapt when exposed to new data. The work presented makes following contributions: 1) Two different architectures are proposed which adapts to any N-terminal in the transmission line. 2) The models proposed do not require large dataset or high sampling frequency. Additionally, they can be trained quickly and generalize well to the problem. 3) The first architecture is based off decision trees for its simplicity, easy visualization which have not been used earlier. Fault location method uses traveling wave-based approach for location of faults. The method is tested with performance better than expected accuracy and fault location error is less than ±1%. 4) The second architecture uses single support vector machine to classify ten types of shunt faults and Regression model for fault location which eliminates manual work. The architecture was tested on real data and has proven to be better than first architecture. The regression model has fault location error less than ±1% for both three and two terminals. 5) Both the architectures are tested on real fault data which gives a substantial evidence of its application.
295

Analysis and diagnosis of faults in the PEMFC for fuel cell electrical vehicles / Analyse et diagnostique des défauts de PEMFC pour véhicules à pile à combustible

Mohammadi, Ali 12 December 2014 (has links)
Ces dernières années, la pile à combustible à membrane échangeuse de proton (PEMFC) a fait l’objet d’un intérêt particulier pour des applications liées au transport. De par le fait qu’elle fonctionne à une température de fonctionnement relativement basse (50-100°C) combiné à une membrane polymère solide empêchant tout risque de fuite. Dans ce travail, des expérimentations ont été effectuées pour démontrer que la distribution de température à une influence significative sur les performances de la PEMFC. Par ailleurs, ce travail comporte une analyse ayant pour but de d’indiquer une amélioration de la résistivité ionique de la membrane, de la vitesse de réaction et de la diffusion des gaz en fonction de la température. Des expérimentations sur une cellule puis sur un stack complet ont permis d’évaluer l’impact de la température à l’aide d’un modèle 3D développé simulant les performances de la pile en relation avec la distribution de température. Dans cette thèse, deux piles à combustible ont permis de valider le comportement et d’en déduire une relation entre la tension de sortie et la distribution de température dans différentes conditions de fonctionnement. Une étude expérimentale prenant en compte la tension et la température a été effectuée sur une cellule en mesurant la température et le voltage en douze points à l’aide de thermocouples et de sonde de tension. Le modèle 3D proposé permet ainsi d’améliorer la durée de vie d’une pile ainsi que sa fiabilité, il permet aussi d’effectuer un diagnostic et de détecter en ligne un défaut. Ceci est effectué en calculant la densité de courant localement à différentes conditions de fonctionnement en utilisant la méthode de Newton Raphson. De par le développement de ce modèle sensible à un défaut, un algorithme de détection de défaut ainsi que la stratégie de diagnostic ont été développé en utilisant des réseaux de neurones artificiels (RNN). Ces derniers ont été utilisés pour la classification supervisée de défaut permettant ainsi le diagnostic. / In recent years, according to the upcoming challenge of pollution, fuel saving, to use on FCEV is increasing. It can be that fuel cell power train divided in the PEMFC, Batteries, DC/DC converters, DC/AC inverters and electrical motors. The Proton Exchange Membrane Fuel cells (PEMFC) have consistently been considered for transportation application. Characteristic features of PEMFC include lower temperature (50 to 100 °C) and solid polymer electrolyte membrane. In this work, experiments have shown that the temperature distributions can significant influence on the performance of the PEMFC. Also analytical studies have indicated improvement of ionic resistivity of the electrolyte membrane, kinetics of electrochemical reaction and gas diffusion electrodes have directly related to temperature. This work evaluated the effectiveness of temperature on a single and stack fuel cell. In addition, a 3D model is developed by effective of temperature on performance on the fuel cell. In this thesis, two PEM fuel cells have been considered to find out the relationship and analyze the behaviors of the cell voltage and temperature distributions under various operating conditions. An experimental study for voltage and temperature has been executed, using one cell, 12 thermocouples and 12 voltage sensors have been installed at different points of the cell. In this work a new model was proposed to improve the lifetime and reliability of the power train and to detect online faults. Besides, current distributions in different points of the cell based on varying operating conditions are calculated by the Newton Raphson method. On the basis of the developed fault sensitive models above, an ANN based fault detection; diagnosis strategy and the related algorithm have been developed. The identified patterns ANN have been used in the supervision and the diagnosis of the PEMFC drivetrain. The ANN advantages of the ability to include a lot of data made possible to classify the faults in terms of their type.
296

Rheology of the Alpine Fault Mylonite Zone : deformation processes at and below the base of the seismogenic zone in a major plate boundary structure

Toy, Virginia Gail, n/a January 2008 (has links)
The Alpine Fault is the major structure of the Pacific-Australian plate boundary through New Zealand�s South Island. During dextral reverse fault slip, a <5 million year old, ~1 km thick mylonite zone has been exhumed in the hanging-wall, providing unique exposure of material deformed to very high strains at deep crustal levels under boundary conditions constrained by present-day plate motions. The purpose of this study was to investigate the fault zone rheology and mechanisms of strain localisation, to obtain further information about how the structural development of this shear zone relates to the kinematic and thermal boundary constraints, and to investigate the mechanisms by which the viscously deforming mylonite zone is linked to the brittle structure, that fails episodically causing large earthquakes. This study has focussed on the central section of the fault from Harihari to Fox Glacier. In this area, mylonites derived from a quartzofeldspathic Alpine Schist protolith are most common, but slivers of Western Province-derived footwall material, which can be differentiated using mineralogy and bulk rock geochemistry, were also incorporated into the fault zone. These footwall-derived mylonites are increasingly common towards the north. At amphibolite-facies conditions mylonitic deformation was localised to the mylonite and ultramylonite subzones of the schist-derived mylonites. Most deformation was accommodated by dislocation creep of quartz, which developed strong Y-maximum crystallographic preferred orientation (CPO) patterns by prism (a) dominant slip. Formation of this highly-oriented fabric would have led to significant geometric softening and enhanced strain localisation. During this high strain deformation, pre-existing Alpine Schist fabrics in polyphase rocks were reconstituted to relatively well-mixed, finer-grained aggregates. As a result of this fabric homogenisation, strong syn-mylonitic object lineations were not formed. Strain models show that weak lineations trending towards ~090� and kinematic directions indicated by asymmetric fabrics and CPO pattern symmetry could have formed during pure shear stretches up-dip of the fault of ~3.5, coupled with simple shear strains [greater than or equal to]30. The preferred estimate of simple:pure shear strain gives a kinematc vorticity number, W[k] [greater than or equal to]̲ 0.9997. Rapid exhumation due to fault slip resulted in advection of crustal isotherms. New thermobarometric and fluid inclusion analyses from fault zone materials allow the thermal gradient along an uplift path in the fault rocks to be more precisely defined than previously. Fluid inclusion data indicate temperatures of 325+̲15�C were experienced at depths of ~45 km, so that a high thermal gradient of ~75�C km⁻� is indicated in the near-surface. This gradient must fall off to [ less than approximately]l0�C km⁻� below the brittle-viscous transition since feldspar thermobarometry, Ti-inbiotite thermometry and the absence of prism(c)-slip quartz CPO fabrics indicate deformation temperatures did not exceed ~ 650�C at [greater than or equal to] 7.0-8.5�1.5 kbar, ie. 26-33 km depth. During exhumation, the strongly oriented quartzite fabrics were not favourably oriented for activation of the lower temperature basal(a) slip system, which should have dominated at depths [less than approximately]20 km. Quartz continued to deform by crystal-plastic mechanisms to shallow levels. However, pure dislocation creep of quartz was replaced by a frictional-viscous deformation mechanism of sliding on weak mica basal planes coupled with dislocation creep of quartz. Such frictional-viscous flow is particularly favoured during high-strain rate events as might be expected during rupture of the overlying brittle fault zone. Maximum flow stresses supported by this mechanism are ~65 Mpa, similar to those indicated by recrystallised grain size paleopiezometry of quartz (D>25[mu]m, indicating [Delta][sigma][max] ~55 MPa for most mylonites). It is likely that the preferentially oriented prism (a) slip system was activated during these events, so the Y-maximum CPO fabrics were preserved. Simple numerical models show that activation of this slip system is favoured over the basal (a) system, which has a lower critical resolved shear stress (CRSS) at low temperatures, for aggregates with strong Y-maximum orientations. Absence of pervasive crystal-plastic deformation of micas and feldspars during activation of this mechanism also resulted in preservation of mineral chemistries from the highest grades of mylonitic deformation (ie. amphibolite-facies). Retrograde, epidote-amphibolite to greenschist-facies mineral assemblages were pervasively developed in ultramylonites and cataclasites immediately adjacent to the fault core and in footwall-derived mylonites, perhaps during episodic transfer of this material into and subsequently out of the cooler footwall block. In the more distal protomylonites, retrograde assemblages were locally developed along shear bands that also accommodated most of the mylonitic deformation in these rocks. Ti-in-biotite thermometry suggests biotite in these shear bands equilibrated down to ~500+̲50�C, suggesting crystal-plastic deformation of this mineral continued to these temperatures. Crossed-girdle quartz CPO fabrics were formed in these protomylonites by basal (a) dominant slip, indicating a strongly oriented fabric had not previously formed at depth due to the relatively small strains, and that dislocation creep of quartz continued at depths [less than or equal to]20 km. Lineation orientations, CPO fabric symmetry and shear-band fabrics in these protomylonites are consistent with a smaller simple:pure shear strain ratio than that observed closer to the fault core (W[k] [greater than approximately] 0.98), but require a similar total pure shear component. Furthermore, they indicate an increase in the simple shear component with time, consistent with incorporation of new hanging-wall material into the fault zone. Pre-existing lineations were only slowly rotated into coincidence with the mylonitic simple shear direction in the shear bands since they lay close to the simple shear plane, and inherited orientations were not destroyed until large finite strains (<100) were achieved. As the fault rocks were exhumed through the brittle-viscous transition, they experienced localised brittle shear failures. These small-scale seismic events formed friction melts (ie. pseudotachylytes). The volume of pseudotachylyte produced is related to host rock mineralogy (more melt in host rocks containing hydrated minerals), and fabric (more melt in isotropic host rocks). Frictional melting also occurred within cataclastic hosts, indicating the cataclasites around the principal slip surface of the Alpine Fault were produced by multiple episodes of discrete shear rather than distributed cataclastic flow. Pseudotachylytes were also formed in the presence of fluids, suggesting relatively high fault gouge permeabilities were transiently attained, probably during large earthquakes. Frictional melting contributed to formation of phyllosilicate-rich fault gouges, weakening the brittle structure and promoting slip localisation. The location of faulting and pseudotachylyte formation, and the strength of the fault in the brittle regime were strongly influenced by cyclic hydrothermal cementation processes. A thermomechanical model of the central Alpine Fault zone has been defined using the results of this study. The mylonites represent a localised zone of high simple shear strain, embedded in a crustal block that underwent bulk pure shear. The boundaries of the simple shear zone moved into the surrounding material with time. This means that the exhumed sequence does not represent a simple 'time slice' illustrating progressive fault rock development during increasing simple shear strains. The deformation history of the mylonites at deep crustal P-T conditions had a profound influence on subsequent deformation mechanisms and fabric development during exhumation.
297

Extensional subsidence, inversion and volumetric contraction in the Bass Basin of Australia : a seismic study / Pradipta Kumar Das.

Das, Pradipta Kumar January 2001 (has links)
"August, 2001" / Bibliography: leaves 173-183. / xvi, 184, 12 leaves : ill. (some col.), maps, plates (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / "The primary objective of the study was to gain a better understanding of the tectonostratigraphic evolutionary history of the Bass Basin. In particular, the study has focussed on mapping and analysing all the faults and fault patterns in the Bass Basin in relation to the subsidence history and its influence on sedimentation and hydrocarbon potential of the basin. The reason why the Durroon area and the Bass area behaved differently in response to extensional stresses was investigated. As a final outcome, it was thought important to clarify some of the existing disagreement about the broad tectonic and structural history of the basin and in particular to separate the influence of the Otway and Tasman Sea rifting episodes on the sedimentation history of the Bass and Durroon area. The study also aimed at investigating the occurence in the basin and nature of a recently recognised fault system, a polygonal fault system." --p. 2. / Thesis (Ph.D.)--University of Adelaide, National Centre for Petroleum Geology and Geophysics, 2002
298

L'ÉVOLUTION MAGMATIQUE ET TECTONO-MÉTAMORPHIQUE DU SUBSTRATUM DU DOMAINE VALAISAN (COMPLEXE DU VERSOYEN, ALPES OCCIDENTALES) - IMPLICATIONS DANS L'HISTOIRE ALPINE

Cannic, Sebastien 10 October 1996 (has links) (PDF)
Le domaine valaisan dessine la suture majeure qui marque la limite entre les zones internes et externes des Alpes occidentales et dont l'interprétation géodynamique était controversée. Cette suture est constituée d'une série de flysch (le flysch valaisan) et d'un complexe magmatique et sédimentaire (le complexe du Versoyen). Suivant les auteurs, les roches magmatiques d'affinité tholéïtique pourraient représenter: 1) une klippe d'origine piémontaise (suture d'hyper-collision), 2) une écaille ophiolitique située au front d'un prisme d'accrétion (suture océanique), 3) un complexe magmatique lié à un amincissement crustal (inversion structurale). Le but de ce travail était de trouver des arguments qui permettaient de résoudre cette controverse. Ainsi les résultats de ce travail montrent que : - Dans la région du col du Petit-Saint-Bernard (frontière franco-italienne), certaines tholéïtes sont recoupées par des filons leucocrates qui correspondent à des liquides différenciés, cogénétiques du magmatisme. Les datations UlPb sur les zircons contenus dans l'un de ces filons indiquent un âge Carbonifère supérieur- Permien inférieur pour le magmatisme du Versoyen. - Ce magmatisme présente des caractères géochimiques et isotopiques, intermédiaires entre ceux des N-MORB et des T-MORB, dans les régions du col du Petit-Saint-Bernard et de Visp (Suisse). Ces tholéïtes dériveraient de la fusion partielle d'un manteau appauvri (de type N-MORB), avec probablement la participation d'une source enrichie (de type OIB), ce qui est en accord avec une mise en place dans un domaine en cours d'océanisation. - Le complexe du Versoyen est affecté par un métamorphisme polyphasé éclogitique, puis schiste bleu et enfin schiste vert. La paragénèse éclogitique correspond à des conditions de Haute-Pression et Basse-Température (P > 13Kb, 425 < T < 475°C) qui traduisent un enfouissement à grande profondeur, lié à une subduction. Les datations Ar/Ar réalisées sur les phengites donnent des âges de refroidissement proches de 33 Ma et permettent d'établir le chemin P-T-t de ce complexe au cours de l'exhumation des éclogites. - Le complexe du Versoyen est affecté par une déformation syn-schiste vert qui correspond à un jeu normal vers le SE. La comparaison entre les données de terrain et les données sismiques ECORS suggère que les failles normales se prolongent en profondeur et s'applatissent vers 10-15 km. Cette déformation postérieure à 38 Ma explique en partie l'exhumation des éclogites. Ce jeu normal est contemporain de chevauchements dans la zone externe et pourrait accommoder un réamincissement crustal au cours de la collision alpine. Ces données montrent que l'individualisation du substratum du domaine valaisan est liée au cycle hercynien et que ses relations complexes avec le flysch sus-jacent sont liées à une inversion structurale anté-flysch, alors que son évolution tectono-métamorphique est controlée par une extension succèdant aux phases compressives.
299

Plate boundary deformation of the Pacific plate : two case studies

Leitner, Beate 14 June 1999 (has links)
Two examples of Pacific rim plate boundary deformation are presented. In the first part of the thesis crustal models are derived for the northwestern part of the Vizcaino block in California using marine seismic and gravity data collected by the Mendocino Triple Junction Seismic Experiment. A northwest-southeast trending kink in the Moho is imaged and interpreted to have formed under compression by reactivation of preexisting thrust faults in the paleoaccretionary prism at the seaward margin of the Vizcaino block. The study suggests that the deformation resulted from mainly north-south compression between the Pacific-Juan de Fuca plates across the Mendocino transform fault and predates late Pliocene Pacific-North America plate convergence. In the second part, 195 earthquakes recorded during the duration of the Southern Alps Passive Seismic Experiment (SAPSE) are analysed. Precise earthquake locations and focal mechanisms provide unprecedented detail of the seismotectonics in the central South Island. The short term (6 month) SAPSE seismicity is compared with long term (8 years) seismicity recorded by the New Zealand National Seismic network and the Lake Pukaki network. The seismicity rate of the Alpine fault is low, but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Changes of the depth of the seismogenic zone, generally uniform at about 10-12 km, occur only localised over distances smaller than 30 km, suggesting that thermal perturbations must be of similar scale. This implies that the thermal effects of the uplift of the Southern Alps do not change the seismogenic depth significantly and are not in accordance with most of the present thermal models. Both the Hope and Porters Pass fault zones are seismically active and deformation is accommodated near the fault zones and in the adjacent crust. North of Mt Cook, a triangular shaped region along the Alpine fault is characterised by absence of earthquakes. We interpret this as the result of the plate boundary shift from the Alpine fault to the Hope and Porters Pass fault zones. The study region shows distributed deformation in a 60-100 km wide zone on NNE-SSW trending thrust faults and strike-slip mechanisms on transfer faults. / Graduation date: 2000 / Best scan available for black and white figures.
300

Integrated approach to solving reservoir problems and evaluations using sequence stratigraphy, geological structures and diagenesis in Orange Basin, South Africa

Solomon Adeniyi Adekola January 2010 (has links)
<p>Sandstone and shale samples were selected within the systems tracts for laboratory analyses. The sidewall and core samples were subjected to petrographic thin section analysis, mineralogical analyses which include x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stable carbon and oxygen isotopes geochemistry to determine the diagenetic alteration at deposition and post deposition in the basin. The shale samples were subjected to Rock-Eval pyrolysis and accelerated solvent extraction (ASE) prior to gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) analyses of the rock extracts, in order to determine the provenance, type and thermal maturity of organic matter present in sediments of the Orange Basin. The results revealed a complex diagenetic history of sandstones in this basin, which includes compaction, cementation/micritization, dissolution, silicification/overgrowth of quartz, and fracturing. The Eh-pH shows that the cements in the area of the basin under investigation were precipitated under weak acidic and slightly alkaline conditions. The &delta / 18O isotope values range from -1.648 to 10.054 %, -1.574 to 13.134 %, and -2.644 to 16.180 % in the LST, TST, and HST, respectively. While &delta / 13C isotope values range from -25.667 to -12.44 %, -27.862 to -6.954% and -27.407 to -19.935 % in the LST, TST, and HST, respectively. The plot of &delta / 18O versus &delta / 13C shows that the sediments were deposited in shallow marine temperate conditions.</p>

Page generated in 0.0461 seconds