Spelling suggestions: "subject:"figure.it"" "subject:"figure:skynet""
41 |
Design of insect-scale flapping wing vehiclesNabawy, Mostafa January 2015 (has links)
This thesis contributes to the state of the art in integrated design of insect-scale piezoelectric actuated flapping wing vehicles through the development of novel theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of these models into a closed form design process. A comprehensive literature review of available engineered designs of miniature rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and actuator kinematics is proposed as an effective means of classifying the large variation of vehicle configurations currently under development. The most successful insect-scale vehicles developed to date have used piezoelectric actuation, system resonance for motion amplification, and passive wing pitching. A novel analytical treatment is proposed to quantify induced power losses in normal hover that accounts for the effects of non uniform downwash, wake periodicity and effective flapping disc area. Two different quasi-steady aerodynamic modelling approaches are undertaken, one based on blade element analysis and one based on lifting line theory. Both approaches are explicitly linked to the underlying flow physics and, unlike a number of competing approaches, do not require empirical data. Models have been successfully validated against experimental and numerical data from the literature. These models have allowed improved insight into the role of the wing leading-edge vortex in lift augmentation and quantification of the comparative contributions of induced and profile drag for insect-like wings in hover. Theoretical aerodynamic analysis has been used to identify a theoretical solution for the optimum planform for a flapping wing in terms of chord and twist as a function of span. It is shown that an untwisted elliptical planform minimises profile power, whereas a more highly tapered design such as that found on a hummingbird minimises induced power. Aero-optimum wing kinematics for hovering are also assessed. It is shown that for efficient flight the flapping velocity should be constant whereas for maximum effectiveness the flapping velocity should be sinusoidal. For both cases, the wing pitching at stroke reversal should be as rapid as possible. A dynamic electromechanical model of piezoelectric bending actuators has been developed and validated against data obtained from experiments undertaken as part of this thesis. An expression for the electromechanical coupling factor (EMCF) is extracted from the analytical model and is used to understand the influence of actuator design variables on actuator performance. It is found that the variation in EMCF with design variables is similar for both static and dynamic operation, however for light damping the dynamic EMCF will typically be an order of magnitude greater than for static operation. Theoretical contributions to aerodynamic and electromechanical modelling are integrated into a low order design method for propulsion system sizing. The method is unique in that aside from mass fraction estimation, the underlying models are fully physics based. The transparency of the design method provides the designer with clear insight into effects of changing core design variables such as the maximum flapping amplitude, wing mass, transmission ratio, piezoelectric characteristics on the overall design solution. Whilst the wing mass is only around 10% of the actuator mass, the effective wing mass is 16 times the effective actuator mass for a typical transmission ratio of 10 and hence the wing mass dominates the inertial contribution to the system dynamics. For optimum aerodynamic effectiveness and efficiency it is important to achieve high flapping amplitudes, however this is typically limited by the maximum allowable field strength of the piezoelectric material used in the actuator.
|
42 |
THERMOELECTRIC BUILDING ENVELOPE: MATERIAL CHARACTERIZATION, MODELING, AND EXPERIMENTAL PERFORMANCE EVALUATIONXiaoli Liu (5930732) 20 July 2022 (has links)
<p>In the United States, buildings are responsible for almost 40% of the country’s total energy consumption and 38% of the total greenhouse gas emissions. Researchers are constantly seeking sustainable and efficient energy generation solutions for buildings as society continues to cope with the intensifying energy crisis and environmental deterioration. Thermoelectric technology is one such solution that potentially can lead to significant energy recovery and conversion between waste or excess thermal energy and electrical energy. One promising application is integrating thermoelectric materials into the building envelope (TBE) for power generation and building heating and cooling without transporting energy among subsystems and refrigerant use. TBE can combine structural support and thermal storage with power generation and thermal-activated cooling and heating, thereby contributing to sustainable living and energy. </p>
<p>TBE technology is still in its early development stages. This dissertation aimed to develop a fundamental understanding of the characteristics, behaviors, operation, and control of TBE systems as energy-efficient measures for thermal energy harvesting and thermal comfort regulation and to address the significant research gaps concerning high-conversion efficiency materials and optimal module configuration as well as system deployment related to real-world applications. Accordingly, this dissertation focused on the following three key objectives: (1) development and characterization of new thermoelectric composite materials; (2) identification of optimal designs and controls of TBE and established mathematical models for performance simulation; and (3) quantification of the energy-saving benefits of TBE. </p>
<p>The following five aspects specifically were investigated:</p>
<p>(1)<em> Material development and characterization</em>. New thermoelectric cement composites were developed with cement and various additives, material concentrations, and fabrication methods in the laboratory. Their thermoelectric properties (e.g., Seebeck coefficient, thermal conductivity, electrical conductivity, power factor, and the figure of merit) were measured simultaneously and characterized at 300–350 K.</p>
<p>(2)<em> Module evaluation.</em> Commercially available thermoelectric modules (TEMs) were assessed using well-designed test apparatus in both the heat pumping and power generation modes. The test results validated the numerical model, which assisted with performance comparison and material selection between cement-based and commercial TEMs for the TBE prototype.</p>
<p>(3)<em> Prototype assessment. </em>A convective TBE prototype and a radiant TBE prototype were designed, assembled, and evaluated in a pair of controlled testing chambers. The TBE’s surface temperature, thermal capacity, and COP were assessed under summer and winter conditions. </p>
<p>(4)<em> Prototype modeling. </em>The first-principle-based numerical models of both the convective and radiant TBE prototypes were developed in Modelica. The modeling results indicated good agreement with the experimental data. The verified models were used to study the impacts of the design parameters and operating conditions on the heat pumping performance of TBE.</p>
<p>(5)<em> System simulation. </em>A TBE building system model was established by integrating the TBE prototype model within a building’s heat balance model, considering the building construction, climate condition, power control, etc. Its seasonal performance under various climate conditions was studied to identify the potential optimal operation and energy savings. </p>
<p>This dissertation confirmed several key findings in the areas of material development, system design and operation, and energy savings. The TBE achieved higher efficiency with a heat pump for heating than for cooling generally. The TBE heating system performed better than a conventional electric heater (efficiency assumed at 0.9). The measures that improved TBE heating efficiency were enhancing the material’s thermoelectric properties, optimizing the geometry and number of TEMs, and improving the boundary heat transfer of TEMs. </p>
<p>This dissertation concluded that the TBE system is a promising alternative to conventional heating systems in buildings. Furthermore, the knowledge gained will strengthen the understanding of thermoelectrics in the building domain and guide further development in TBE, as well as facilitate the operation of net-zero energy and carbon-neutral buildings. </p>
|
43 |
Thermoelectric Propeties of Cu Based Chalcogenide CompoundsChetty, Raju January 2014 (has links) (PDF)
Thermoelectric (TE) materials directly convert heat energy into electrical energy. The conversion efficiency of the TE devices depends on the performance of the materials. The conversion efficiency of available thermoelectric materials and devices is low. Therefore, the development of new materials for improving thermoelectric device performance is a highly essential. As the performance of the TE materials depends on TE figure of merit [zT=S2P T ] which consist of three material properties such as Seebeck coefficient (S), electrical resistivity ( ) and thermal conductivity ( ). Thermoelectric figure of merit can be improved by either increase of power factor or decreasing of thermal conductivity or by both. In the present thesis, Cu based chalcogenide compounds are chosen for the study of thermoelectric properties because of their complex crystal structure, which leads to lower values of thermal conductivity. Also, the power factor of these materials can be tuned by the partial substitution doping. In the present thesis, Cu based chalcogenide compounds quaternary chalcogenide compound (Cu2ZnSnSe4), ternary compounds (Cu2SnSe3 and Cu2GeSe3) and tetrahedrite materials (Cu12Sb4S13) have been prepared by solid state synthesis. The prepared compounds are characterized by XRD for the phase identification, Raman Spectroscopy used as complementary technique for XRD, SEM for surface morphology and EPMA for the phase purity and elemental composition analysis respectively. For the evaluation of zT, thermoelectric properties of all the samples have been studied by measuring Seebeck coefficient, resistivity and thermal diffusivity. In the chapter 1, a brief introduction about thermoelectricity and its effects is discussed. Thermoelectric materials parameters such as electrical resistivity, Seebeck coefficient and thermal conductivity for different class of materials are mentioned. The selection of thermoelectric materials and the motivation for choosing the Cu based chalcogenide compounds for thermoelectric applications are discussed.
In chapter 2, the details of the experiments carried out for Cu based chalcogenide compounds are presented.
In chapter 3, the effect on thermoelectric properties by the cation substitution on quaternary chalcogenide compound Cu2+xZnSn1 xSe4 (0, 0.025, 0.05, 0.075, 0.1, 0.125, and 0.15) is studied. The electrical resistivity of all the samples decreases with an increase in Cu content except for Cu21ZnSn09Se4, most likely due to a higher content of the ZnSe. All the samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was higher as compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.23 at 673 K is obtained for Cu205ZnSn095Se4.
In chapter 4, the effect of multi{substitution of Cu21ZnSn1 xInxSe4 (0, 0.05, 0.075, and 0.1) on transport properties were studied. The Rietveld powder X-ray diffraction data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples con firmed the formation of a tetragonal kesterite structure. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The co-doping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper zinc and indium tin substitution. Even though, the power factors (S2 ) of indium-doped samples Cu21ZnSn1 xInxSe4 (x=0.05, 0.075) are almost the same, the maximum zT=0.45 at 773 K was obtained for Cu21Zn09Sn0925In0075Se4 due to its smaller value of thermal conductivity.
In chapter 5, thermoelectric properties of Zn doped ternary compounds Cu2ZnxSn1 xSe3 (x = 0, 0.025, 0.05, 0.075) were studied. The undoped com\pound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The electrical resistivity decreased up to the samples with Zn content x=0.05 in Cu2ZnxSn1 xSe3, and slightly increased in the sample Cu2Zn0075Sn0925Se3 . This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples decreased with increasing of temperature, which points toward the dominance of phonon scattering at high temperatures. The maximum zT = 0.34 at 723 K is obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples.
In chapter 6, thermoelectric properties of Cu2Ge1 xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds is studied. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by indium doping. The electrical resistivity ( ) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2Ge1 xInxSe3 (x= 0, 0.1) at room temperature (RT) con rm the sign of Seebeck coefficient. The trend of as a function of doping content for the samples Cu2Ge1 xInxSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity decreases with increasing temperature, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (zT) = 0.23 at 723 K was obtained for Cu2In01Ge09Se3.
In chapter 7, thermoelectric properties of Cu12 xMn1 xSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) samples were studied. The Rietveld powder XRD pattern and Electron Probe Micro Analysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit (zT) decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum zT = 0.76 at 623 K is obtained for Cu12Sb4S13.
In chapter 8, the summary and conclusion of the present work is presented.
|
44 |
Study of Thermoelectric Properties of Lead Telluride Based Alloys and Two-Phase CompoundsBali, Ashoka January 2014 (has links) (PDF)
The growing need of energy worldwide has lead to an increasing demand for alternative sources of power generation. Thermoelectric materials are one of the ‘green energy sources’ which convert directly heat into electricity, and vice–versa. The efficiency of this conversion is dependent on ‘figure of merit’ (z T), which depends on the material’s Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (κ) through the relation z T=S2T/ρκ, where T is the temperature. High values of z T lead to high efficiency, and therefore, z T must be maximized. Lead telluride is well–established thermoelectric material in the temperature range 350 K and 850 K. The aim of this thesis is to improve the z T of the material by adopting two different approaches – (i) doping/alloying and (ii) introducing additional interfaces in bulk i.e. having two phase PbTe.
In this thesis, first an introduction about the thermoelectric phenomenon is given, along with the material parameters on which z T depends. A survey of literature associated with PbTe is done and the current status of thermoelectric devices is summarized briefly. This is followed by a description of the synthesis procedure and the measurement techniques adopted in this work.
The first approach is the conventional alloying and doping of the material by which carrier concentration of the material is controlled so that maximum power factor Sρ2 is achieved and a simultaneous reduction of thermal conductivity takes place by mass fluctuation scattering. Under this, two systems have been studied. The first system is PbTe1−ySey alloys doped with In (nominal composition: Pb0.999In0.001Te1−ySey, y=0.01, 0.05, 0.10, 0.20, 0.25, 0.30). The compounds were single phase and polycrystalline. Lattice constants obtained from Rietveld refinement of X–ray diffraction (XRD) data showed that Vegard’s law was followed, indicating solid solution formation between PbTe and PbSe. Compositional analysis showed lower indium content than the nominal composition. Temperature dependent Seebeck coefficient showed all the samples to be n–type while Pisarenko plots showed that indium did not act as a resonant dopant. Electrical resistivity increased with temperature, while mobility vs T fitting showed a mixed scattering mechanism of acoustic phonon and ionized impurity scattering. Thermal conductivity followed a T1 dependence, which indicated acoustic phonon scattering. At high temperature, slight bipolar effect was observed, which showed the importance of control-ling carrier concentration for good thermoelectric properties. A z T of 0.66 was achieved at 800 K.
The second alloy studied under this approach was Mn doped Pb1−ySnyTe alloy (nominal composition Pb0.96−yMn0.04SnyTe (y=0.56, 0.64, 0.72, 0.80)). All the samples followed Vegard’s law, showing formation of complete solid solution between PbTe and SnTe. Microstructure analysis showed grain size distribution of <1 µm to more than 10 µm. Seebeck coefficient showed all samples were p-type and the role of two valence band conduction in p–type PbTe based materials. Electrical resistivity showed a de-crease possibly due to (i) large carrier concentration or (ii) increased mobility due to Mn2+ ions. Thermal conductivity decreased systematically with decreasing Sn content. Bipolar effect was observed at high temperatures. Accordingly, the highest z T of 0.82 at 720 K was obtained for the sample with Sn (y=0.56) content due to optimum carrier concentration and maximum disorder.
The second approach of having additional interfaces in bulk focuses on reducing thermal conductivity by scattering phonons. Under this approach, three systems were studied. The first system is PbTe with bismuth (Bi) secondary phase. The XRD and Ra-man studies showed that bismuth was not a dopant in PbTe, while micrographs showed micrometer–sized Bi secondary phase dispersed in bulk of PbTe. Reduction in Seebeck coefficient showed possible hole donation across PbTe–Bi interfaces, while electrical re-sistivity and thermal conductivity showed that the role of electrons at the interfaces was more important than phonons for the present bismuth concentrations. For the parent PbTe, z T of 0.8 at 725 K was reached, which, however decreased for bismuth added samples.
The second system studied under the two phase approach was indium (In) added PbTe. Indium was not found to act as dopant in PbTe, while micrometer sized indium phase was found in PbTe bulk. A decrease in the electronic thermal conductivity ac-companied by a simultaneous increase of the electrical resistivity and Seebeck coefficient throughout the measurement range indicated increased scattering of electrons at PbTe-In interfaces. Higher values of the lattice thermal conductivity showed that the PbTe–In interfaces were ineffective at scattering phonons, which was initially expected due to the lattice mismatch between PbTe and In. For PbTe with 3 at. % In phase, z T value of 0.78 at 723 K was achieved. Under the two phase approach, as a comparative study, PbTe with both micrometer sized Bi and In phases together was prepared, in which no improvement in z T was found.
A comparison of both the approaches showed that the alloying approach is better than the two–phase approach. This is because micrometer sized secondary phase scatter the electrons more than the phonons, leading to adverse effect on the transport coef-ficients, and hence, on z T. Alloying, on the other hand, is more beneficial in reducing thermal conductivity by mass fluctuation scattering, along with a simultaneous reduction of electrical resistivity.
|
45 |
Prédiction et optimisation des techniques pour l’observation à haute résolution angulaire et pour la future génération de très grands télescopes / Prevision and optimisation of technics for high angular resolution observations and for the next generation of extremely large telescopesGiordano, Christophe 19 December 2014 (has links)
Avec l’avènement de la prochaine génération de télescope de plus de 30m de diamètre, il devient primordial de réduire le coût des observations et d’améliorer leur rendement scientifique. De plus il est essentiel de construire ces instruments sur des sites disposant d’une qualité optique maximale. J’ai donc essayé, au cours de ma thèse, de développer un outil fiable, facile d’utilisation et économique permettant de satisfaire ces exigences. J’ai donc utilisé le modèle de prévision météorologique Weather Research and Forecasting et le modèle de calcul de la turbulence optique Trinquet-Vernin pour prédire, plusieurs heures à l’avance, les conditions optiques du ciel tout au long de la nuit. Cette information permettrait d’améliorer la gestion du programme d’observation, appelée "flexible scheduling", et ainsi de réduire les pertes dues à la variation des conditions atmosphériques. Les résultats obtenus et les améliorations apportées au modèle WRF-TV lui permettent de présenter un bon accord entre les mesures et les prévisions ce qui est prometteur pour une utilisation réelle. Au delà de cette gestion, nous avons voulu créer un moyen d’améliorer la recherche et le test de sites astronomiquement intéressants. Nous avons donc définit un paramètre de qualité qui prend en compte les conditions météorologiques et optiques. Ce paramètre a été testé au-dessus de l’île de La Palma aux Canaries et a montré que l’Observatorio del Roque de los Muchachos est situé au meilleur emplacement de l’île. Enfin nous avons créé une routine d’automatisation du modèle WRF-TV afin d’avoir un outil opérationnel fonctionnant de manière autonome. / With the next generation of extremely large telescope having mirror with a diameter larger than 30m, it becomes essential to reduce the cost of observations and to improve their scientific efficiency. Moreover it is fundamental to build these huge infrastructures in location having the best possible optical quality. The purpose of my thesis is to bring a solution easier and more economical than before. I used the Weather Research and Forecasting (WRF) model and the Trinquet-Vernin parametrization, which computes the values of the optical turbulence, to forecast a couple of hours in advance the evolution of the sky optical quality along the coming night. This information would improve the management of observation program, called "flexible scheduling", and thereby reduce losses due to the atmospheric variations. Our results and improvements allow the model us WRF-TV to have a good agreement between previsions and in-situ measurements in different sites, which is promising for a real use in an observatory. Beyond the flexible scheduling, we wanted to create a tool to improve the search for new sites or site testing for already existing sites. Therefore we defined a quality parameter which takes into account meteorological conditions (wind, humidity, precipitable water vapor) and optical conditions (seeing, coherence time, isoplanatic angle). This parameter has been tested above La Palma in Canary island showing that the Observatorio del Roque de los Muchachos is located close to the best possible location of the island. Finally we created an automated program to use WRF-TV model in order to have an operational tool working routinely.
|
46 |
Plasmonic properties and applications of metallic nanostructuresZhen, Yurong 16 September 2013 (has links)
Plasmonic properties and the related novel applications are studied on various
types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure,
the motion of free electrons in a metal-film with nanoscale thickness is confined in
its normal dimension and free in the other two. Describing the free-electron motion at
metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation
of such motions and is well known. When further perforated with periodic array of
holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate
the coupling between free-space photon and SPP. We applied this concept to achieve
a plasmonic perfect absorber. The experimentally observed reflection dip splitting
is qualitatively explained by a perturbation theory based on the above concept. If
confined in 2D, the nanostructures become nanowires that intrigue a broad range of
research interests. We performed various studies on the resonance and propagation
of metal nanowires with different materials, cross-sectional shapes and form factors,
in passive or active medium, in support of corresponding experimental works. Finite-
Difference Time-Domain (FDTD) simulations show that simulated results agrees well
with experiments and makes fundamental mode analysis possible. Confined in 3D,
the electron motions in a single metal nanoparticle (NP) leads to localized surface
plasmon resonance (LSPR) that enables another novel and important application:
plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the
excited plasmon will decay into heat in the particle and will heat up the surrounding
liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP
to liquid will undergo an explosive process and make a vapor envelop: nanobubble.
We characterized the size, pressure and temperature of the nanobubble by a simple
model relying on Mie calculations and continuous medium assumption. A novel
effective medium method is also developed to replace the role of Mie calculations.
The characterized temperature is in excellent agreement with that by Raman scattering.
If fabricated in an ordered cluster, NPs exhibit double-resonance features and
the double Fano-resonant structure is demonstrated to most enhance the four-wave
mixing efficiency.
|
Page generated in 0.0498 seconds