• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 3
  • Tagged with
  • 29
  • 29
  • 29
  • 14
  • 13
  • 12
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fire performance of unprotected and protected concrete filled steel hollow structural sections

Rush, David Ian January 2013 (has links)
Concrete filled steel hollow structural (CFS) sections are increasingly used to support large compressive loads in buildings, with the concrete infill and the steel tube working together to yield several benefits both at ambient temperature and during a fire. These members are now widely applied in the design of highly optimized multi-storey and high rise buildings where fire resistance ratings of two or more hours may be required. Whilst the response and design of these sections at ambient temperatures is reasonably well understood, their response in fire, and thus their fire resistance design, is less well established. Structural fire resistance design guidance is available but has been developed based on tests of predominantly short, concentrically-loaded, small-diameter columns in braced frames using normal strength concrete. The current prescriptive guidance is limited and the design of CFS columns is thus often based on a detailed performance based approach, which can be time consuming and expensive and which is generally not well supported by a deep understanding of CFS columns’ behaviour in real fires. This thesis aims to understand the fundamental thermal and mechanical factors at play within these sections so as to provide guidance on how to improve their design for fire resistance when applied either as unprotected or protected sections. A meta-analysis of available furnace test data is used to demonstrate that current guidance fails to capture the relevant mechanics and thus poorly predicts fire resistance. It is also demonstrated that the predictive abilities of the available design standards vary with physical characteristics of the CFS section such as shape and size. A factor which has been observed in furnace tests on CFS sections but which is not accounted for in available guidance is the formation of an air gap between the steel tube and the concrete core due to differential expansion; this affects their structural response in fire. The insulating effect of air gap formation has not previously been addressed in literature and an experimental program is presented to systematically assess the effects of a gap on the heat transfer through the section; showing that the presence of even a 1 mm gap is important. To explicitly assess the heat transfer response within both unprotected and fire protected (i.e. insulated) CFS sections, 34 large scale standard furnace tests were performed in partnership with an industry sponsor. Fourteen tests on large scale unloaded unprotected CFS sections are presented to assess current capability to predict the thermal response and to assess the effects of different sectional and material parameters on heating. New best practice thermal modelling guidance is suggested based on comparison between the models and observed temperatures from the tests. Twenty CFS specimens of varying size and shape, protected with different types and thicknesses of intumescent paint fire insulation, were also tested unloaded in a furnace to understand the thermal evolution within protected CFS sections and to develop design guidance to support application of intumescent coatings in performance based fire resistance design of CFS sections. These tests demonstrate that the intumescent coatings were far more effective than expected when applied to CFS sections, and that current methods of designing the coatings’ thickness are overly conservative. The reason for this appears to be that the calculation of effective section factor which is used in the prescription of intumescent coating thicknesses is based on the thermal response of unprotected CFS sections which display fundamentally different heating characteristics from protected sections due to the development of a thermal gradient in the concrete core. It is also demonstrated (by calculation supported by the testing presented herein) that the steel failure temperature (i.e. limiting temperature) of an unprotected CFS column in fire is significantly higher than one which is protected; procedures to determine the limiting temperature of protected sections are suggested. Finally, the residual strength of fire-exposed CFS columns is examined through structural testing of 19 of the 34 fire tested columns along with unheated control specimens. The results provide insights into the residual response of unprotected and protected CFS section exposed to fire, and demonstrate a reasonable ability to calculate their residual structural capacity. The work presented in this thesis has shed light on the ability of available guidance to rationally predict the thermal and structural response to fire of CFS columns, has improved the understanding of the thermal evolution within protected and unprotected CFS sections in fire, has provided best-practice guidance and material input parameters for both thermal and structural modelling of CFS sections, and has improved understanding of the residual capacity of CFS sections after a fire.
2

Axial Capacity of Concrete-Filled Steel Elliptical Hollow Sections

Lam, Dennis, Testo, N. January 2007 (has links)
No / Concrete filled steel tube (CFST) columns are becoming increasingly popular due to the advantages they offered. They are not only considered aesthetically pleasing but can also offer significant improvement in axial capacity without increases in crosssectional area being required. Elliptical steel hollow sections represent a recent and rare addition to the range of cross-sections available to structural engineers, however, despite widespread interest in their application, a lack of verified design guidance is inhibiting uptake. The use of elliptical steel hollow section with concrete infill is new and innovative, not only provides the advantage mentioned above, but also on the basis of both architectural appeal and structural efficiency. The aim of this paper is to investigate the behaviour of the elliptical CFSTs under axial loading. A total of 12 specimens were tested with wall thicknesses of 4 mm, 5 mm, 6.3 mm and concrete core strength of 30 MPa. This paper reported on the behaviour of concrete filled elliptical hollow sections under axial load. The effect of the wall thickness of the steel section, the bond between steel and concrete and the concrete confinement are presented.
3

Strength, stiffness and ductility of concrete-filled steel columns under axial compression

Lam, Dennis, Wang, Z-B., Tao, Z., Han, L-H., Uy, B., Lam, Dennis, Kang, W-H. 12 January 2017 (has links)
Yes / Extensive experimental and theoretical studies have been conducted on the compressive strength of concrete-filled steel tubular (CFST) columns, but little attention has been paid to their compressive stiffness and deformation capacity. Despite this, strength prediction approaches in existing design codes still have various limitations. A finite element model, which was previously proposed by the authors and verified using a large amount of experimental data, is used in this paper to generate simulation data covering a wide range of parameters for circular and rectangular CFST stub columns under axial compression. Regression analysis is conducted to propose simplified models to predict the compressive strength, the compressive stiffness, and the compressive strain corresponding to the compressive strength (ductility) for the composite columns. Based on the new strength prediction model, the capacity reduction factors for the steel and concrete materials are recalibrated to achieve a target reliability index of 3.04 when considering resistance effect only.
4

Axial-load response of CFST stub columns with external stainless steel and recycled aggregate concrete: Testing, mechanism analysis and design

Zhang, W-H., Wang, R., Zhao, H., Lam, Dennis, Chen, P. 18 March 2022 (has links)
Yes / Recycled aggregate concrete filled stainless steel tube (RAC-FSST) is a new type of composite member combining the advantage of stainless steel and RAC. In this paper, a total of twenty-four RAC-FSST stub columns were tested under axial load, considering the influences of coarse recycled aggregate (CRA) content, steel ratios and compressive strengths of RAC. The obtained results, including the failure patterns, responses of axial load vs. deformation, stress states of external stainless steel tube and inner RAC and confinement effects, were systematically analyzed. Results indicated that all specimens presented good ductility and high residual strengths after reaching the maximum axial load. The elastic stiffness of RAC-FSSTs obviously declined with the increasing CRA content, while the strain at the ultimate load was larger. The inclusion of CRA could advance the occurrence of the confinement and lead to lower confining stress. Based on the experimental results, an analytical model with consideration of confinement action was developed to predict the axial response of RAC-FSST stub columns. Besides, the current design provisions for the normal CFST and RAC-FST members were employed to evaluate their applicability to RAC-FSSTs. In general, the design rules EN 1994-1-1:2004, GB 50936-2014 and T/CECS 625-2019 gave a conservative and relatively accurate prediction on ultimate strength of RAC-FSST stub columns. / This work was supported by the National Natural Science Foundation.
5

Experiments on special-shaped CFST stub columns under axial compression

Ren, Q-X., Han, L-H., Lam, Dennis, Hou, C. January 2014 (has links)
This paper is an attempt to study the behavior of axially loaded concrete filled steel tubular (CFST) stub columns with special-shaped cross-sections, i.e. triangular, fan-shaped, D-shaped, 1/4 circular and semi-circular. A total of forty-four specimens including CFST stub columns and reference hollow steel tubular stub columns were tested. The effects of the changing steel tube wall thickness and the infill of concrete on the behavior of the composite columns were investigated. The results showed that the tested special-shaped CFST stub columns behaved in a ductile manner, and the composite columns showed an outward local buckling model near the middle section. Generally, the failure modes of these five kinds of special-shaped specimens were similar to those of the square CFST stub columns. Finally, simplified model for predicting the cross-sectional strength of the special-shaped CFST sections was discussed and proposed.
6

Tests on elliptical concrete filled steel tubular (CFST) beams and columns

Ren, Q-X., Han, L-H., Lam, Dennis, Li, W. 04 May 2014 (has links)
No / This paper presents a series of test results of elliptical concrete filled steel tubular (CFST) beams and columns to explore their performance under bending and compression. A total of twenty-six specimens were tested, including eight beams under pure bending and eighteen columns under the combination of bending and compression. The main parameters were the shear span to depth ratio for beams, the slenderness ratio and the load eccentricity for columns. The test results showed that the CFST beams and columns with elliptical sections behaved in ductile manners and were similar to the CFST members with circular sections. Finally, simplified models for predicting the bending strength, the initial and serviceability-level section bending stiffness of the elliptical CFST beams, as well as the axial and eccentric compressive strength of the composite columns were discussed.
7

Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns.

El-Lobody, E., Young, B., Lam, Dennis January 2006 (has links)
This paper presents the behaviour and design of axially loaded concrete-filled steel tube circular stub columns. The study was conducted over a wide range of concrete cube strengths ranging from 30 to 110 MPa. The external diameter of the steel tube-to-plate thickness (D/t) ratio ranged from 15 to 80 covering compact steel tube sections. An accurate finite element model was developed to carry out the analysis. Accurate nonlinear material models for confined concrete and steel tubes were used. The column strengths and load¿axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled compact steel tube circular stub columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results of the parametric study, it is found that the design strengths given by the American Specifications and Australian Standards are conservative, while those of the European Code are generally unconservative. Reliability analysis was performed to evaluate the current composite column design rules.
8

Shape effect on the behaviour of axially loaded concrete filled steel tubular stub columns at elevated temperature.

Dai, Xianghe, Lam, Dennis January 2012 (has links)
Concrete filled steel tubular columns have been extensively used in modern construction owing to that they utilise the most favourable properties of both constituent materials. It has been recognized that concrete filled tubular columns provide excellent structural properties such as high load bearing capacity, ductility, large energy-absorption capacity and good structural fire behaviour. This paper presents the structural fire behaviour of a series of concrete filled steel tubular stub columns with four typical column sectional shapes in standard fire. The selected concrete filled steel tube stub columns are divided into three groups by equal section strength at ambient temperature, equal steel cross sectional areas and equal concrete core cross sectional areas. The temperature distribution, critical temperature and fire exposing time etc. of selected composite columns are extracted by numerical simulations using commercial FE package ABAQUS. Based on the analysis and comparison of typical parameters, the effect of column sectional shapes on member temperature distribution and structural fire behaviour are discussed. It shows concrete steel tubular column with circular section possesses the best structural fire behaviour, followed by columns with elliptical, square and rectangular sections. Based on this research study, a simplified equation for the design of concrete filled columns at elevated temperature is proposed.
9

Computational and Experimental Study on the Behavior of Diaphragms in Steel Buildings

Wei, Gengrui 03 February 2022 (has links)
The lateral force resisting system (LFRS) of a steel building consist of two parts, i.e., a vertical LFRS such as braced frames or shear walls, and a horizontal LFRS with diaphragms playing a crucial role. There are various types of floor and roof diaphragms in steel buildings, such as concrete-filled steel deck diaphragms for the floor system and bare steel deck diaphragms for the roof system of a typical steel braced frame building, and standing seam roof diaphragms for a typical metal building. Compared to vertical elements of a building's LFRS, our understanding of the horizontal elements, i.e., the diaphragms, is grossly lacking. The motivation for this work comes from the gaps identified in the research, including the lack of generally adopted acceptance criteria and modeling protocols for seismic performance-based design of bare steel deck and concrete-filled steel deck diaphragms through linear and nonlinear analysis, the need to better understand the complex behavior of concrete-filled steel deck diaphragms with irregular configurations such as reentrant corners and openings under lateral loading, the absence of appropriate Rs values for the alternative diaphragm seismic design approach in the current building code that considers diaphragm inelasticity, and the demand for understanding the in-plane behavior of a standing seam roof system and its use in lateral bracing of rafters in metal buildings. A series of computational and experimental studies were conducted to investigate the behavior of diaphragms in buildings systems, including: 1) development of acceptance criteria and modeling protocol for performance-based seismic design of bare and concrete-filled steel deck diaphragms using a database of existing cantilever diaphragm tests; 2) a computational study on the nonlinear behavior of diaphragms with irregular configurations under lateral loading using high-fidelity finite element models validated against experiment test results; 3) investigation of the seismic behavior and performance of steel buildings with buckling restrained braced frames that considers different diaphragm design approaches and diaphragm inelasticity using nonlinear three-dimensional (3D) computational models; and 4) an experimental study that investigated the in-plane behavior of full-scale standing seam roof assemblies and their use in lateral bracing of rafters in metal building systems. The results of these studies contribute to a better understanding of the behavior of diaphragms in steel buildings and lead to several recommendations for diaphragm design. Firstly, a series of m-factors (ductility measures) and nonlinear modeling parameters (multi-linear cyclic backbone curves) were determined for bare steel deck diaphragms and concrete-filled steel deck diaphragms. These new provisions are recommended for adoption in ASCE 41 / AISC 342, which allows the use of ductility in steel deck diaphragms for their design and retrofits. Secondly, results of the finite element analysis on concrete-filled steel deck diaphragms revealed a concentrated distribution of shear transfer through the shear connections on the collectors of the diaphragm near braced frames and a stress concentration in the composite slab near reentrant corners and openings. Thirdly, results of eigenvalue analyses with nonlinear 3D building models showed that the consideration of diaphragm flexibility led to an increase in first mode period between 13% and 48%. A comparison of results from pushover analyses and response history analyses indicated that even though the pushover analyses (based on a first mode load pattern) identified the BRBF as being weaker than the diaphragms and therefore dominating the inelastic pushover behavior, response history analyses demonstrated that the diaphragms can experience substantial inelasticity during a dynamic response. The response history results also suggest that there would be a significant difference in seismic behavior of buildings modeled as two-dimensional (2D) planar frames as compared to the 3D structures modeled herein. Furthermore, the observed final collapse mode involves an interaction between large BRBF story drifts combined with diaphragm deformations that are additive and exacerbate second order effects leading to collapse. The computed adjusted collapse margin ratios for all buildings satisfied the FEMA P695 criteria for acceptance. Therefore, it is concluded that the alternative diaphragm design procedure with the proposed Rs values (Rs = 2 for concrete-filled steel deck diaphragm and Rs = 2.5 for bare steel deck diaphragm) are reasonable for use in design of these types of structures. Lastly, the effects of different standing seam roof configurations (panel type, clip type, thermal insulation, and purlin spacing) on the in-plane stiffness and strength of the standing seam roof system were investigated through an experimental testing program, and a method was described to use these experimental results in the calculations of required bracing for metal building rafters. / Doctor of Philosophy / A diaphragm is a horizontal structural component (e.g. floors and roof) that transfers lateral forces induced by wind or earthquakes to the vertical portions (e.g. frames and walls) of the lateral force resisting system (LFRS) of the building. There are various types of floor and roof diaphragms in steel buildings, such as concrete-filled steel deck diaphragms for the floor system and bare steel deck diaphragms for the roof system of a typical steel braced frame building, and standing seam roof diaphragms for a typical metal building. Compared to vertical elements of a building's LFRS, our understanding of the horizontal elements, i.e., the diaphragms, is grossly lacking. To address the research gaps in understanding the behavior of diaphragms and utilizing them in building design, this work presents a series of computational and experimental studies. In the first study, past experimental test data were analyzed to develop acceptance criteria and modeling protocol for performance-based seismic design of steel deck diaphragms. In the second study, finite element analyses were conducted to understand the nonlinear behavior of concrete-filled steel deck diaphragms subjected to in-plane lateral loading. In the third study, nonlinear three-dimensional computational building models were developed to investigate the seismic behavior and performance of steel buildings with different diaphragm design approaches and diaphragm inelasticity. In the fourth study, experimental testing on full-scale standing seam roof assemblies was conducted to investigate their in-plane behavior and their use in lateral bracing of rafters in metal building systems. The results of these studies contribute to a better understanding of the behavior of diaphragms in steel buildings and lead to several recommendations for diaphragm design.
10

Innovative Self-Centering Connection for CCFT Composite Columns

Gao, Yu 27 January 2016 (has links)
Concrete filled steel tubes are regarded as ideal frame members in seismic resisting systems, as they combine large axial and flexural capacity with ductility. The combination of the two materials increases the strength of the confined concrete and avoids premature local buckling of the steel tube. These benefits are more prominent for circular than for rectangular concrete filled steel tubes. However, most common connection configurations for circular concrete filled tubes are not economic in the US market due to (a) the desire of designers to use only fully restrained connections and its associated (b) high cost of fabrication and field welding. Research indicates that well designed partially restrained connections can supply equal or even better cyclic behavior. Partially restrained connections also possess potential capability to develop self-centering system, which has many merits in seismic design. The goal of this research is to develop a new connection configuration between circular concrete filled steel columns and conventional W steel beams. The new connection configuration is intended to provide another option for rapid assembling on site with low erection costs. The proposed connection is based on an extended stiffened end plate that utilizes through rods. The rods are a combination of conventional steel and shape memory alloy that provide both energy dissipation and self-centering capacity. The new connection configuration should be workable for large beam sizes and can be easily expanded to a biaxial bending moment connection. / Ph. D.

Page generated in 0.0409 seconds