• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 681
  • 173
  • 100
  • 28
  • 21
  • 14
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1456
  • 1456
  • 1456
  • 537
  • 241
  • 160
  • 156
  • 156
  • 137
  • 134
  • 134
  • 128
  • 120
  • 112
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Fatigue crack propagation in functionally graded materials

Tilbrook, Matthew Thomas, Materials Science & Engineering, Faculty of Science, UNSW January 2005 (has links)
Propagation of cracks in functionally graded materials (FGMs) under cyclic loading was investigated via experiments and finite element (FE) analysis. Alumina-epoxy composites with an interpenetrating-network structure and tailored spatial variation in composition were produced via a multi-step infiltration technique. Compressed polyurethane foam was infiltrated with alumina slip. After foam burn-out and sintering, epoxy was infiltrated into the porous alumina body. Non-graded specimens with a range of compositions were produced, and elastic properties and fatigue behaviour were characterised. An increase in crack propagation resistance under cyclic loading was quantified via a novel analytical approach. A simulation platform was developed with the commercial FE package ANSYS. Material gradient was applied via nodal temperature definitions. Stress intensity factors were calculated from nodal displacements near the crack-tip. Deflection criteria were compared and the local symmetry criterion provided the most accurate and efficient predictions. An automated mesh-redefinition algorithm enabled incremental simulation of crack propagation. Effects of gradient and crack-geometry parameters on crack-tip stresses were investigated, along with influences of crack-shape, crack-bridging, residual stresses and plasticity. The model provided predictions and data analysis for experimental specimens. Fatigue cracks in graded specimens deflected due to elastic property mismatch, concordant with FE predictions. In other FGMs, thermal or plastic properties may dominate deflection behaviour. Weaker step-interfaces influenced crack paths in some specimens; otherwise effects of toughness variation and gradient steps on crack path were negligible. Crack shape has an influence, but this is secondary to that of elastic gradient. Cracks in FGM specimens initially experienced increase in fatigue resistance with crack-extension followed by sudden decreases at step-interfaces. Bridging had a notable effect on crack propagation resistance but not on crack path. Similarly, crack paths did not differ between monotonic and cyclic loading, although crack-extension effects did. Recommendations for analysis and optimisation strategies for other FGM systems are given. Experimental characterization of FGMs is important, rather than relying on theoretical models. Opportunities for optimization of graded structures are limited by the properties of the constituent materials and resultant general crack deflection behaviour.
312

Analytic Model Derivation Of Microfluidic Flow For MEMS Virtual-Reality CAD

Aumeerally, Manisah, n/a January 2006 (has links)
This thesis derives a first approximation model that will describe the flow of fluid in microfluidic devices such as in microchannels, microdiffusers and micronozzles using electrical network modelling. The important parameter that is of concern is the flow rates of these devices. The purpose of this work is to contribute to the physical component of our interactive Virtual Reality (VR)-prototyping tool for MEMS, with emphasis on fast calculations for interactive CAD design. Current calculations are too time consuming and not suitable for interactive CAD with dynamic animations. This work contributes to and fills the need for the development of MEMS dynamic visualisation, showing the movement of fluid within microdevices in time scale. Microfluidic MEMS devices are used in a wide range of applications, such as in chemical analysis, gene expression analysis, electronic cooling system and inkjet printers. Their success lies in their microdimensions, enabling the creation of systems that are considerably minute yet can contain many complex subsystems. With this reduction in size, the advantages of requiring less material for analysis, less power consumption, less wastage and an increase in portability becomes their selling point. Market size is in excess of US$50 billion in 2004, according to a study made by Nexus. New applications are constantly being developed leading to creation of new devices, such as the DNA and the protein chip. Applications are found in pharmaceuticals, diagnostic, biotechnology and the food industry. An example is the outcome of the mapping and sequencing of the human genome DNA in the late 1990's leading to greater understanding of our genetic makeup. Armed with this knowledge, doctors will be able to treat diseases that were deemed untreatable before, such as diabetes or cancer. Among the tools with which that can be achieved include the DNA chip which is used to analyse an individual's genetic makeup and the Gene chip used in the study of cancer. With this burgeoning influx of new devices and an increase in demand for them there is a need for better and more efficient designs. The MEMS design process is time consuming and costly. Many calculations rely on Finite Element Analysis, which has slow and time consuming algorithms, that make interactive CAD unworkable. This is because the iterative algorithms for calculating the animated images showing the ongoing proccess as they occur, are too slow. Faster computers do not solve the void of efficient algorithms, because with faster computer also comes the demand for a fasters response. A 40 - 90 minute FEA calculation will not be replaced by a faster computer in the next decades to an almost instant response. Efficient design tools are required to shorten this process. These interactive CAD tools need to be able to give quick yet accurate results. Current CAD tools involve time consuming numerical analysis technique which requires hours of numerous iterations for the device structure design followed by more calculations to achieve the required output specification. Although there is a need for a detailed analysis, especially in solving for a particular aspect of the design, having a tool to quickly get a first approximation will greatly shorten the guesswork involved in determining the overall requirement. The underlying theory for the fluid flow model is based on traditional continuum theory and the Navier-Stokes equation is used in the derivation of a layered flow model in which the flow region is segmented into layered sections, each having different flow rates. The flow characteristics of each sections are modeled as electrical components in an electrical circuit. Matlab 6.5 (MatlabTM) is used for the modelling aspect and Simulink is used for the simulation.
313

Finite Element Analysis and Improvement of Impeller Blade Geometry

Wong, Vui-Hong, n/a January 2003 (has links)
Stratification of water in large reservoirs occurs in summer, or at anytime in hot climates where the water surface is exposed long-term to sunlight and the water surface is heated. Natural mixing will not occur due to the cooler and denser water always staying at the lower levels. Therefore, mechanical circulators are designed to prevent water quality problems related to stratification and depletion of dissolved oxygen. Impellers that produce the flow in mechanical circulators are available in different sizes and these impellers are designed to produce different flow rates. Due to hydraulic loadings, impellers have to be strong and durable. Loadings on impellers depend on their geometries and therefore, a durable impeller is a good combination of the use of correct materials and good geometry. Long and slender impellers are prone to failure when subjected to high hydrodynamic loadings. Nowadays, designers have very limited information on predicting the stresses on impellers and the deflection patterns of impellers because there are no design rules in designing these impeller blades and there is no such thing as "best geometry". A good impeller blade design is by guesswork and experience. In order to design the geometry that suits this application, trial-and-error finite element analyses have been conducted in this project to minimize stress levels on the blades. This research involves the use of finite element analysis (FEA) to predict stress and deflection of impeller blades used on large (5m diameter) ducted axial flow impellers as the first step in the design process. Then, based on the results, improvements have been done to the models until the final design was made. As far as the author has been able to determine, this has not been researched before. Finite Element Analysis has been used on wind turbine blades, rudders and hulls of boats but not on axial flow impeller blades of the type used in this project. For the purpose of this project, commercial finite element computer program packages STRAND6 and STRAND7 were used as the main analysis tools. A static line load increasing linearly with radius along the blade has been used to simulate the assumed hydrodynamic loading, and applied to all FEA blade models. The analysis results proved the stresses on blades are largely dependant on the blade geometry. From the analysis results, the author modified the stacking arrangement of the FEA elements in order to minimize both the tensile stresses and the displacements of the blades at the tip. Parametric studies have been done in order to obtain the best FEA impeller blade model.
314

Structural Capacity of Light Gauge Steel Storage Rack Uprights

Koen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
315

Application of fracture mechanics to predict the growth of single and multi-level delaminations and disbonds in composite structures

Mikulik, Zoltan, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The high stiffness to weight ratio and fatigue resistance make carbon fibre composites suitable for both military and large civil aircraft. The limited ability of current numerical methods to capture the complex growth of damage in laminated composites leads to a conservative design approach applied in today??s composite aircraft structures. The aim of the presented research was to develop an improved methodology for the failure prediction of laminated composites containing delaminations located between arbitrary layers in the laminate, and to extend the investigations to composite structures subjected to barely visible impact damage (BVID). The advantages of fracture mechanics-based methodologies to predict interlaminar failure in composite structures were identified, from which the crack tip element (CTE) approach and the virtual crack closure technique (VCCT) were selected for assessment. Extensive validation of these fracture mechanics methods is presented on a number of composite structures ranging from coupons to large stiffened panels. It was shown that the VCCT was relatively insensitive to the crack front mesh size, whilst predictions using the CTE methodology were significantly influenced by the element size. Based on the obtained results modelling guidelines for the VCCT and CTE were established. Significant contribution of this research to the field of the analysis of composite structures was the development of a novel test method for the evaluation of embedded single and multi-level delaminations. The test procedure of the single delamination specimen was proposed as an analogous test to conventional compression experiments. The transverse test overcame the inherent problems of in-plane compression testing and produced less scatter of experimental measurements. Quantitative analysis of numerical results employing the validated finite element modelling approaches showed that the failure load and location were in agreement with experiments. Furthermore, new modelling techniques for composite structures containing BVID proposed in this research produced good correlation with test data from the compression after impact (CAI) test. The study of BVID provided a significant contribution toward the knowledge of the applicability of implicit FE solvers to predict failure of CAI specimens as well as the criticality of centrally impacted specimens.
316

Strongly orthotropic continuum mechanics

Kellermann, David Conrad, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
The principal contribution of this dissertation is a theory of Strongly Orthotropic Continuum Mechanics that is derived entirely from an assertion of geometric strain indeterminacy. Implementable into the finite element method, it can resolve widespread kinematic misrepresentations and offer unique and purportedly exact strain-induced energies by removing the assumptions of strain tensor symmetry. This continuum theory births the proposal of a new class of physical tensors described as the Intrinsic Field Tensors capable of generalising the response of most classical mechanical metrics, a number of specialised formulations and the solutions shown to be kinematically intermediate. A series of numerical examples demonstrate Euclidean objectivity, material frame-indifference, patch test satisfaction, and agreement between the subsequent Material Principal Co-rotation and P??I??C decomposition methods that produce the intermediary stress/strain fields. The encompassing theory has wide applicability owing to its fundamental divergence from conventional mechanics, it offers non-trivial outcomes when applied to even very simple problems and its use of not the Eulerian, Lagrangian but the Intrinsic Frame generates previously unreported results in strongly orthotropic continua.
317

PIEZOELECTRIC ACTUATOR DESIGN OPTIMISATION FOR SHAPE CONTROL OF SMART COMPOSITE PLATE STRUCTURES

Nguyen, Van Ky Quan January 2005 (has links)
Shape control of a structure with distributed piezoelectric actuators can be achieved through optimally selecting the loci, shapes and sizes of the piezoelectric actuators and choosing the electric fields applied to the actuators. Shape control can be categorised as either static or dynamic shape control. Whether it is a transient or gradual change, static or dynamic shape control, both aim to determine the loci, sizes, and shapes of piezoelectric actuators, and the applied voltages such that a desired structural shape is achieved effectively. This thesis is primarily concerned with establishing a finite element formulation for the general smart laminated composite plate structure, which is capable to analyse static and dynamic deformation using non-rectangular elements. The mechanical deformation of the smart composite plate is modelled using a third order plate theory, while the electric field is simulated based on a layer-wise theory. The finite element formulation for static and dynamics analysis is verified by comparing with available numerical results. Selected experiments have also been conducted to measure structural deformation and the experimental results are used to correlate with those of the finite element formulation for static analysis. In addition, the Linear Least Square (LLS) method is employed to study the effect of different piezoelectric actuator patch pattern on the results of error function, which is the least square error between the calculated and desired structural shapes in static structural shape control. The second issue of this thesis deals with piezoelectric actuator design optimisation (PADO) for quasi-static shape control by finding the applied voltage and the configuration of piezoelectric actuator patch to minimise error function, whereas the piezoelectric actuator configuration is defined based on the optimisation technique of altering nodal coordinates (size/shape optimisation) or eliminating inefficient elements in a structural mesh (topology optimisation). Several shape control algorithms are developed to improve the structural shape control by reducing the error function. Further development of the GA-based voltage and piezoelectric actuator design optimisation method includes the constraint handling, where the error function can be optimised subjected to energy consumption or other way around. The numerical examples are presented in order to verify that the proposed algorithms are applicable to quasi-static shape control based on voltage and piezoelectric actuator design optimisation (PADO) in terms of minimising the error function. The third issue is to use the present finite element formulation for a modal shape control and for controlling resonant vibration of smart composite plate structures. The controlled resonant vibration formulation is developed. Modal analysis and LLS methods are also employed to optimise the applied voltage to piezoelectric actuators for achieving the modal shapes. The Newmark direct time integration method is used to study harmonic excitation of smart structures. Numerical results are presented to induce harmonic vibration of structure with controlled magnitude via adjusting the damping and to verify the controlled resonant vibration formulation.
318

Washboarding of Corrugated Cardboard

Wendler, Sven Dieter, not supplied January 2006 (has links)
The aims of the thesis were to study how washboarding (the undulations present on the surface of corrugated cardboard used to manufacture boxes) relates to the mechanical properties of paper and the board manufacturing conditions and to examine the impact of washboarding upon the structural integrity and printability of corrugated cardboard packaging. A digital image profilometry technique was developed to measure the washboarding profiles of corrugated board. This technique was used to measure the washboarding depth and profiles for a range of corrugated boards, some constructed manually and some machine manufactured. This enabled a study into how a change in the mechanical properties of paper and glue affect washboarding depth. The effect that the speed of machine manufacturing had upon the degree of washboarding was also determined. A study of how environmental conditions affect washboarding geometry was undertaken. The effects of the extent of washboarding upon a range of board performance measures were tested empirically and modelled using Finite Element Analysis. These were edgewise compression testing (ECT), three-point bend, and MD-Shear (an Amcor Ltd. proprietary test). A method was developed to measure full-tone print coverage of corrugated board and was used to study how washboarding affects the printing quality of corrugated board.
319

A comparative study of 2 CAD-integrated FE-programs using the linear static analysis

Amin, Handren January 2009 (has links)
<p>This Master’s thesis is summery of a comparative study of 2 commercial CAD-integrated</p><p>FE-programs. These FE-programs were CATIA v5 and ABAQUS 6.3-7. The primary</p><p>objective of this study is to investigate the basic FEA capabilities of CATIA and</p><p>ABAQUS 6.7-3 in performing the linear static analysis and to identify whether there are</p><p>any differences and similarities between results the both Finite Element FE codes give.</p><p>The overall research question in the present thesis is: Do different FE programs, here</p><p>CATIA and ABAQUS, give the same results for FE analysis giving the same models if</p><p>subjected to the same boundary conditions? This research seeks to achieve its aims</p><p>through making a comparative qualitative study. Certain pre-selections were performed in</p><p>advance of conducting Finite element analysis and the comparison process to ensure that</p><p>results would reflect only the most relevant and meaningful differences and similarities</p><p>between the both FE-codes. Five different 3D solid models have been selected to perform</p><p>linear static Finite element analysis on. All these models (case studies) are created in</p><p>CATIA V5 and the linear static analysis conducted on using FE-codes CATIA v5 and</p><p>ABAQUS 6.7-3. Three static responses (results) of the linear static analysis have been</p><p>adopted as criteria for comparisons purposes. These criteria were: (1) displacements, (2)</p><p>Von Mises stress, and (3) principal stress. The results of comparisons showed that there is</p><p>a very good agreement in most cases and small gap between in a few cases. Results of</p><p>this study demonstrate that the both FE-programs CATIA v5 and ABAQUS 6.7-3 have</p><p>good capabilities to perform FE-analysis and they give very near results. Reason behind</p><p>differences is that each of them uses a different algorithm for solving problems. The final</p><p>answer for the research question is given with valuable recommendations for future work</p><p>in the scope of this research.</p>
320

Three dimensional simulation and magnetic decoupling of the linac in a linac-MR system

St. Aubin, Joel 11 1900 (has links)
Real time image guided radiotherapy has been proposed by integrating an in-line 6 MV linear accelerator (linac) to a magnetic resonance (MR) imager in either a parallel or transverse configuration. In either configuration, magnetic interference in the linac is caused by its immersion in the magnetic fringe fields of the MR imager. Thus in order to minimize the effect of the magnetic interference, investigations on linac performance in external magnetic fields was completed through various simulations. Finite difference and finite element methods as well as particle simulations were performed in order to design an electron gun and an in-line 6 MV linac waveguide. Monte Carlo simulations provided calculations of dose distributions in a water tank from the derived electron phase space at the linac target. The entire simulation was validated against measurements taken from a commercial medical in-line 6 MV linac, other simulation programs, and theory. The validated linac simulation was used to investigate linac performance in external magnetic fields. The results of this investigation showed that the linac had a much lower tolerance to transverse magnetic fields compared to longitudinal fields. While transverse magnetic fields caused a global deflection of the electron beam away from the central axis of the waveguide, longitudinal fields changed the optics of the electron gun in a suboptimal way. Both transverse and longitudinal magnetic fields caused excessive beam loss if the field strength was large enough. Heating caused by excessive beam loss in external magnetic fields was shown to have little effect on the resonant frequency of the waveguide, and any change in dosimetry, if it existed, was shown to be easily corrected using the jaws or multileaf collimators (MLCs). It was determined that the low-field parallel configuration linac-MR system investigated did not require any magnetic shielding, so the focus was on shielding the transverse configuration. Using beam loss, MLC motor tolerance to magnetic fields, and MR imager homogeneity as constraints, passive and active magnetic shielding was designed and optimized. Thus through the parallel configuration, or using magnetic shielding, magnetic interference has been reduced to within the linac operational tolerance. / Medical Physics

Page generated in 0.0838 seconds