• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 680
  • 173
  • 100
  • 28
  • 21
  • 14
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1446
  • 1446
  • 1446
  • 532
  • 239
  • 159
  • 155
  • 155
  • 136
  • 134
  • 132
  • 125
  • 120
  • 108
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション

上原, 拓也, UEHARA, Takuya, 辻野, 貴洋, TSUJINO, Takahiro 06 1900 (has links)
No description available.
342

Compliant mechanisms design with fatigue strength control: a computational framework

2013 June 1900 (has links)
A compliant mechanism gains its motion from the deflection of flexible members or the deformation of one portion of materials with respect to other portions. Design and operation of compliant mechanisms are very important, as most of the natural objects are made of compliant materials mixed with rigid materials, such as the bird wings. The most serious problem with compliant mechanisms is their fatigue problem due to repeating deformation of materials in compliant mechanisms. This thesis presents a study on the computational framework for designing a compliant mechanism under fatigue strength control. The framework is based on the topology optimization technique especially ground structure approach (GSA) together with the Genetic Algorithm (GA) technique. The study presented in this thesis has led to the following conclusions: (1) It is feasible to incorporate fatigue strength control especially the stress-life method in the computational framework based on the GSA for designing compliant mechanisms and (2) The computer program can well implement the computational framework along with the general optimization model and the GA to solve the model. There are two main contributions resulting from this thesis: First one is provision of a computational model to design compliant mechanisms under fatigue strength control. This model also results in a minimum number of elements of the compliant mechanism in design, which means the least weight of mechanisms and least amount of materials. Second one is an experiment for the feasibility of implementing the model in the MATLAB environment which is widely used for engineering computation, which implies a wide applicability of the design system developed in this thesis.
343

Numerical Analysis of Crack Induced Debonding Mechanisms in FRP-Strengthened RC Beams

Monteleone, Agostino 12 1900 (has links)
The continual deterioration of infrastructure has motivated researchers to look for new ways of repairing and monitoring existing structures. A particularly challenging problem confronting engineers in the revival of the infrastructure is the rehabilitation of reinforced concrete (RC) structures. Traditionally, the repair of RC beams has been achieved by bonding steel plates to the structure. Although this technique has proven to be reasonably effective, it has several distinct disadvantages such as susceptibility of the steel plates to corrode and the excessive weight of steel plates when used in long-span beams. Recently, there has been an emergence of structural engineering applications employing fibre reinforced polymer (FRP) composites as an alternative to steel plates. FRP composites are well known for their high strength- and stiffness-to-weight ratios, corrosion resistance, durability, and ease of application. Numerous studies have been conducted to prove the efficiency of bonding FRP on structural elements. In spite of this, industrial practitioners are still concerned about premature debonding of the plates before reaching the desired strength or ductility. Premature debonding initiates from the ends of the plate or from intermediate cracks (IC) in the concrete. While end initiated debonding and peeling mechanisms have been researched extensively, researchers have unanimously recognized the lack of data for the FRP-RC structural members subjected to IC debonding. The scarcity of data compiled exemplifies the need to develop more refined numerical analysis tools to reduce the high cost and significant time required to conduct full-scale physical testing. In this study, the results of a comprehensive numerical investigation are presented to assess the failure mechanisms caused by different types of flexural and shear crack distributions in RC beams strengthened with FRP composites. The model is based on damage mechanics modeling of concrete and a bilinear bond-slip relationship with softening behaviour to represent the FRP-concrete interfacial properties. A discrete crack approach was adopted to simulate crack propagation through a nonlinear fracture mechanics based finite element analysis to investigate the effects of crack spacing and interfacial parameters such as stiffness, local bond strength, and fracture energy on the initiation and propagation of the debonding and structural performance. Results from the analysis reveal that the debonding behaviour and load-carrying capacity are significantly influenced by interfacial fracture energy and crack spacing. The debonding propagation is mainly governed by mode II fracture mechanisms. The results provide an insight on the long-term behaviour of a repair system that is gaining widespread use and will be of interest to researchers and design engineers looking to successfully apply FRP products in civil engineering applications.
344

The Development of a Numerical Human Body Model for the Analysis of Automotive Side Impact Lung Trauma

Yuen, Kin January 2009 (has links)
Thoracic injury is the most dominant segment of automotive side impact traumas. A numerical model that can predict such injuries in crash simulation is essential to the process of designing a safer motor vehicle. The focus of this study was to develop a numerical model to predict lung response and injury in side impact car crash scenarios. A biofidelic human body model was further developed. The geometry, material properties and boundary condition of the organs and soft tissues within the thorax were improved with the intent to ensure stress transmission continuity and model accuracy. The thoracic region of the human body model was revalidated against three pendulum and two sled impact scenarios at different velocities. Other body regions such as the shoulder, abdomen, and pelvis were revalidated. The latest model demonstrated improvements in every response category relative to the previous version of the human body model. The development of the lung model involved advancements in the material properties, and boundary conditions. An analytical approach was presented to correct the lung properties to the in-situ condition. Several injury metric predictor candidates of pulmonary contusion were investigated and compared based on the validated pendulum and sled impact scenarios. The results of this study confirmed the importance of stress wave focusing, reflection, and concentration within the lungs. The bulk modulus of the lung had considerable influence on injury metric outcomes. Despite the viscous criterion yielded similar response for different loading conditions, this study demonstrated that the level of contusion volume varied with the size of the impact surface area. In conclusion, the human body model could be used for the analysis of thoracic response in automotive impact scenarios. The overall model is capable of predicting thoracic response and lung contusion. Future development on the heart and aorta can expand the model capacity to investigate all vital organ injury mechanisms.
345

Probabilistic Determination of Thermal Conductivity and Cyclic Behavior of Nanocomposites via Multi-Phase Homogenization

Tamer, Atakan 16 September 2013 (has links)
A novel multiscale approach is introduced for determining the thermal conductivity of polymer nanocomposites (PNCs) reinforced with single-walled carbon nanotubes (SWCNTs), which accounts for their intrinsic uncertainties associated with dispersion, distribution, and morphology. Heterogeneities in PNCs on nanoscale are identified and quantified in a statistical sense, for the calculation of effective local properties. A finite element method computes the overall macroscale properties of PNCs in conjunction with the Monte Carlo simulations. This Monte Carlo Finite Element Approach (MCFEA) allows for acquiring the randomness in spatial distribution of the nanotubes throughout the composite. Furthermore, the proposed MCFEA utilizes the nanotube content, orientation, aspect ratio and diameter inferred from their statistical information. Local SWCNT volume or weight fractions are assigned to the finite elements (FEs), based on various spatial probability distributions. Multi-phase homogenization techniques are applied to each FE to calculate the local thermal conductivities. Then, the Monte Carlo simulations provide the statistics on the overall thermal conductivity of the PNCs. Subsequently, dispersion characteristics of the nanotubes are assessed by incorporating nanotube agglomerates. In this regard, a multi-phase homogenization method is developed for enhanced accuracy and effectiveness. The effect of the nanotube orientation in a polymer is studied for the cases where the SWCNTs are randomly oriented as well as longitudinally aligned. The influence of voids existing in the polymer is investigated on the thermal conductivity, to capture the uncertainties in PNCs more extensively. Further, a unique damage evaluation model is proposed to assess the degradation of PNCs when subjected to thermal cycling. The growth in void content is represented with a Weibull-based equation, to quantify the deterioration of the thermal and mechanical properties of PNCs under thermal fatigue. In addition, the MCFEA considers the interface resistance of the carbon nanotubes as one of the key factors in the thermal conductivity of nanocomposites. Parametric studies are performed comprehensively. The numerical results obtained are compared with available analytical techniques at hand and with the data from pertinent independent experimental studies. It is found that the proposed MCFEA is capable of estimating the thermal conductivity with good accuracy.
346

A comparative study of 2 CAD-integrated FE-programs using the linear static analysis

Amin, Handren January 2009 (has links)
This Master’s thesis is summery of a comparative study of 2 commercial CAD-integrated FE-programs. These FE-programs were CATIA v5 and ABAQUS 6.3-7. The primary objective of this study is to investigate the basic FEA capabilities of CATIA and ABAQUS 6.7-3 in performing the linear static analysis and to identify whether there are any differences and similarities between results the both Finite Element FE codes give. The overall research question in the present thesis is: Do different FE programs, here CATIA and ABAQUS, give the same results for FE analysis giving the same models if subjected to the same boundary conditions? This research seeks to achieve its aims through making a comparative qualitative study. Certain pre-selections were performed in advance of conducting Finite element analysis and the comparison process to ensure that results would reflect only the most relevant and meaningful differences and similarities between the both FE-codes. Five different 3D solid models have been selected to perform linear static Finite element analysis on. All these models (case studies) are created in CATIA V5 and the linear static analysis conducted on using FE-codes CATIA v5 and ABAQUS 6.7-3. Three static responses (results) of the linear static analysis have been adopted as criteria for comparisons purposes. These criteria were: (1) displacements, (2) Von Mises stress, and (3) principal stress. The results of comparisons showed that there is a very good agreement in most cases and small gap between in a few cases. Results of this study demonstrate that the both FE-programs CATIA v5 and ABAQUS 6.7-3 have good capabilities to perform FE-analysis and they give very near results. Reason behind differences is that each of them uses a different algorithm for solving problems. The final answer for the research question is given with valuable recommendations for future work in the scope of this research.
347

FE analysis and design of the mechanical connection in an osseointegrated prosthesis system

Magnusson, Emelie January 2011 (has links)
In this master thesis the connection between the two major parts of an osseointegrated prosthesis system for lower limb amputees has been investigated by finite element (FE) analysis. The prosthesis system is developed by Integrum and the current design consists of a fixture, which is integrated in the residual bone, an abutment that penetrates the skin and an abutment screw that holds the parts together. The connection between the fixture and the abutment has a hexagonal section and a press-fit section that together form the connection. Due to wear and fracture problems it is desired to improve the connection. A tapered connection could be an alternative and three different taper angles, the effect of the length of the taper and the smoothness of the outer edge of a tapered fixture have been investigated. The results show that the taper has potential to function well and that a longer connection will give lower stresses in the system, but further investigations are needed.
348

Analyzing an Equivalent Single Layer Shim Model to be used for Brake Squeal Reduction

Özdemir, Hulya, Abbas, Azad January 2011 (has links)
The goal in this thesis was to reduce a multilayer shim model, which was modeled from steel and polymer (isotropic materials), into an equivalent single layer shim model. The procedure was to use mathematical formulations to convert a multilayer shim into an ESL (equivalent single layer) shim. Here, a transverse isotropic model is used to prepare for future orthotropic layers. The results show that the ESL model behaves isotropically. In the 2 layer model there was no squeal noise whereas in the ESL models there is.
349

Numerical Analysis of Crack Induced Debonding Mechanisms in FRP-Strengthened RC Beams

Monteleone, Agostino 12 1900 (has links)
The continual deterioration of infrastructure has motivated researchers to look for new ways of repairing and monitoring existing structures. A particularly challenging problem confronting engineers in the revival of the infrastructure is the rehabilitation of reinforced concrete (RC) structures. Traditionally, the repair of RC beams has been achieved by bonding steel plates to the structure. Although this technique has proven to be reasonably effective, it has several distinct disadvantages such as susceptibility of the steel plates to corrode and the excessive weight of steel plates when used in long-span beams. Recently, there has been an emergence of structural engineering applications employing fibre reinforced polymer (FRP) composites as an alternative to steel plates. FRP composites are well known for their high strength- and stiffness-to-weight ratios, corrosion resistance, durability, and ease of application. Numerous studies have been conducted to prove the efficiency of bonding FRP on structural elements. In spite of this, industrial practitioners are still concerned about premature debonding of the plates before reaching the desired strength or ductility. Premature debonding initiates from the ends of the plate or from intermediate cracks (IC) in the concrete. While end initiated debonding and peeling mechanisms have been researched extensively, researchers have unanimously recognized the lack of data for the FRP-RC structural members subjected to IC debonding. The scarcity of data compiled exemplifies the need to develop more refined numerical analysis tools to reduce the high cost and significant time required to conduct full-scale physical testing. In this study, the results of a comprehensive numerical investigation are presented to assess the failure mechanisms caused by different types of flexural and shear crack distributions in RC beams strengthened with FRP composites. The model is based on damage mechanics modeling of concrete and a bilinear bond-slip relationship with softening behaviour to represent the FRP-concrete interfacial properties. A discrete crack approach was adopted to simulate crack propagation through a nonlinear fracture mechanics based finite element analysis to investigate the effects of crack spacing and interfacial parameters such as stiffness, local bond strength, and fracture energy on the initiation and propagation of the debonding and structural performance. Results from the analysis reveal that the debonding behaviour and load-carrying capacity are significantly influenced by interfacial fracture energy and crack spacing. The debonding propagation is mainly governed by mode II fracture mechanisms. The results provide an insight on the long-term behaviour of a repair system that is gaining widespread use and will be of interest to researchers and design engineers looking to successfully apply FRP products in civil engineering applications.
350

The Development of a Numerical Human Body Model for the Analysis of Automotive Side Impact Lung Trauma

Yuen, Kin January 2009 (has links)
Thoracic injury is the most dominant segment of automotive side impact traumas. A numerical model that can predict such injuries in crash simulation is essential to the process of designing a safer motor vehicle. The focus of this study was to develop a numerical model to predict lung response and injury in side impact car crash scenarios. A biofidelic human body model was further developed. The geometry, material properties and boundary condition of the organs and soft tissues within the thorax were improved with the intent to ensure stress transmission continuity and model accuracy. The thoracic region of the human body model was revalidated against three pendulum and two sled impact scenarios at different velocities. Other body regions such as the shoulder, abdomen, and pelvis were revalidated. The latest model demonstrated improvements in every response category relative to the previous version of the human body model. The development of the lung model involved advancements in the material properties, and boundary conditions. An analytical approach was presented to correct the lung properties to the in-situ condition. Several injury metric predictor candidates of pulmonary contusion were investigated and compared based on the validated pendulum and sled impact scenarios. The results of this study confirmed the importance of stress wave focusing, reflection, and concentration within the lungs. The bulk modulus of the lung had considerable influence on injury metric outcomes. Despite the viscous criterion yielded similar response for different loading conditions, this study demonstrated that the level of contusion volume varied with the size of the impact surface area. In conclusion, the human body model could be used for the analysis of thoracic response in automotive impact scenarios. The overall model is capable of predicting thoracic response and lung contusion. Future development on the heart and aorta can expand the model capacity to investigate all vital organ injury mechanisms.

Page generated in 0.2242 seconds