• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Simulation of Hydrogen Diffusion in High Strength Steel

Seru, Vikas Vineeth, Polinati, Venkata Ramana Murthy January 2021 (has links)
This research is about modelling and simulation of how the hydrogen diffuses in high strength steels. The hydrogen diffusion in the material was examined by using finite element software with the help of material properties and some existing data. For modelling and simulating the diffusion analysis in finite element software, a cylindrical type dog-bone shaped specimen was chosen. To determine the diffusion at the centre of specimen, a cross-sectional area of the material was selected to proceed for the analysis. Abaqus software was considered as finite element software to progress the hydrogen diffusion and tensile testing of the specimen. Diffusion analysis was studied under the analogy of heat transfer and also, diffusion analysis with the addition of mechanical load was studied under the analogy of coupled temperature displacement in the Abaqus software. This process has executed for two types of high strength steels 316L and 304L stainless steels. The crack is also considered for analysis to check how it affects the specimen. Further, The 316L and 304L stainless steel results were compared to review that which steel is better to withstand the hydrogen diffusion rate and mechanical load on the material.
2

Finite Element Analysis of Unreinforced Concrete Block Walls Subject to Out-of-Plane Loading

He, Zhong 12 1900 (has links)
<p>Finite element modeling of the structural response of hollow concrete block walls subject to out-of-plane loading has become more common given the availability of computers and general-purpose finite element software packages. In order to develop appropriate models of full-scale walls with and without openings, a parametric study was conducted on simple wall elements to assess different modeling techniques. Two approaches were employed in the study, homogeneous models and heterogeneous models. The linear elastic analysis was carried out to quantify the effects of the modeling techniques for hollow blocks on the structural response of the assembly, specifically for out-of-plane bending. Three structural elements with varying span/thickness ratios were considered, a horizontal spanning strip, a vertical spanning strip and a rectangular wall panel supported on four edges. The values computed using homogeneous and heterogeneous finite element models were found to differ significantly depending on the configuration and span/thickness ratio of the wall.</p><p>Further study was carried out through discrete modeling approach to generate a three-dimensional heterogeneous model to investigate nonlinear behaviour of full-scale walls under out-of-plane loading. The Composite Interface Model, established based on multi-surface plasticity, which is capable of describing both tension and shear failure mechanisms, has been incorporated into the analysis to capture adequately the inelastic behaviour of unit-mortar interface.An effective solution procedure was achieved by implementing the Newton-Raphson method, constrained with the arc-length control method and enhanced by line search algorithm. The proposed model was evaluated using experimental results for ten full-size walls reported in the literature. The comparative analysis has indicated very good agreement between the numerical and experimental results in predicting the cracking and ultimate load values as well as the corresponding crack pattern. / Thesis / Master of Applied Science (MASc)
3

Heat Transfer Analysis In Steel Structures

Narang, Vikas A 04 May 2005 (has links)
The potential hazard of fire is one of the major concerning issues after the recent events of 9/11 and others. A lot of studies and research work is being carried out presently, to ensure the safety of buildings. But, there is no accurate method to estimate the fire endurance/resistance for a building due to the variability of fire characteristics, material properties of construction material, and other characteristics of a building. One can only provide guidelines and can adopt from the lessons learnt in the past to ensure better quality to make the buildings more fire proof, so that they can withstand high temperatures and stresses for a longer time, before collapse mechanism occurs. From a long time, live laboratory tests have been conducted to study the performance of assemblies by subjecting them to appropriate time-temperature histories that are derived from standardized fire curves. The performance-based approach is very time consuming and also involves high costs. In recent times, due to the advances in technology, computer models have been developed, that aid towards the simulations of assemblies and other components of a building that are subjected to a fire event. This approach helps in attaining reasonable results, thereby providing an alternative to the prescriptive and performance-based approaches. This project deals with the study of heat transfer mechanism that takes place in steel structures in case of a fire event. For proper and accurate simulation process, the use of software is a must along with the support of technical resources. Due to high thermal conductivity of steel the heat gets transferred rather fast in the steel section which creates non-uniform temperature distributions because of variable thermal properties, like thermal conductivity and specific heat. 3-D finite element software TAS (Thermal Analysis Software) was used to study the non-uniform temperature distributions in case of a W 12x27 beam protected with vermiculite coating. The results were compared with the studies done by Professor Bletzacker, which involved the furnace testing of a W 12x27 beam by subjecting it to ASTM E-119 curve time-temperature history. In addition to this, the sensitivity of results was evaluated based on the variation of thermal properties for concrete, vermiculite, and gypsum board. Different beam models for W12x27 section protected with vermiculite and gypsum board coatings were simulated to justify their performance based on temperature rise within the assembly. Also, simulations were performed for analyzing the behavior of the beam when subjected to different fire curves like ASTM E-119 and ENV. Analytical analysis was also carried out using the method of Lumped mass parameter method to provide a comparison of results from different models. Finally, conclusions and recommendations were made to ensure further development and understanding in the field of Structural and Fire Protection Engineering.
4

Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software

Ludwig, Lars 14 March 2014 (has links) (PDF)
In the field of singularly perturbed reaction- or convection-diffusion boundary value problems the research area of a priori error analysis for the finite element method, has already been thoroughly investigated. In particular, for mesh adapted methods and/or various stabilization techniques, works have been done that prove optimal rates of convergence or supercloseness uniformly in the perturbation parameter epsilon. Commonly, however, it is assumed that the exact solution behaves nicely in that it obeys certain regularity assumptions although in general, e.g. due to corner singularities, these regularity requirements are not satisfied. So far, insufficient regularity has been met by assuming compatibility conditions on the data. The present thesis originated from the question: What can be shown if these rather unrealistic additional assumptions are dropped? We are interested in epsilon-uniform a priori estimates for convergence and superconvergence that include some regularity parameter that is adjustable to the smoothness of the exact solution. A major difficulty that occurs when seeking the numerical error decay is that the exact solution is not known. Since we strive for reliable rates of convergence we want to avoid the standard approach of the "double-mesh principle". Our choice is to use reference solutions as a substitute for the exact solution. Numerical experiments are intended to confirm the theoretical results and to bring further insights into the interplay between layers and singularities. To computationally realize the thereby arising demanding practical aspects of the finite element method, a new software is developed that turns out to be particularly suited for the needs of the numerical analyst. Its design, features and implementation is described in detail in the second part of the thesis.
5

Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software

Ludwig, Lars 04 March 2014 (has links)
In the field of singularly perturbed reaction- or convection-diffusion boundary value problems the research area of a priori error analysis for the finite element method, has already been thoroughly investigated. In particular, for mesh adapted methods and/or various stabilization techniques, works have been done that prove optimal rates of convergence or supercloseness uniformly in the perturbation parameter epsilon. Commonly, however, it is assumed that the exact solution behaves nicely in that it obeys certain regularity assumptions although in general, e.g. due to corner singularities, these regularity requirements are not satisfied. So far, insufficient regularity has been met by assuming compatibility conditions on the data. The present thesis originated from the question: What can be shown if these rather unrealistic additional assumptions are dropped? We are interested in epsilon-uniform a priori estimates for convergence and superconvergence that include some regularity parameter that is adjustable to the smoothness of the exact solution. A major difficulty that occurs when seeking the numerical error decay is that the exact solution is not known. Since we strive for reliable rates of convergence we want to avoid the standard approach of the "double-mesh principle". Our choice is to use reference solutions as a substitute for the exact solution. Numerical experiments are intended to confirm the theoretical results and to bring further insights into the interplay between layers and singularities. To computationally realize the thereby arising demanding practical aspects of the finite element method, a new software is developed that turns out to be particularly suited for the needs of the numerical analyst. Its design, features and implementation is described in detail in the second part of the thesis.
6

A practical investigation into the measurement of forces on the stator teeth of electrical machines

Bevan, Graeme Rhys January 2013 (has links)
Submitted to the Department of Electrical Engineering in Fulfilment of the Requirements for the Magister Technologiae in Electrical Engineering at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY SUPERVISOR: E. VOSS NOVEMBER 2013 / Radial and peripheral displacement of stator teeth in electrical machines is known to be the cause of undesired vibration which leads to noise. This thesis serves to investigate the possibility of physically measuring the radial displacement of stator teeth caused by electromagnetic forces which, to the author’s knowledge, has not yet been achieved. A simplified practical approach is adopted in order to address the inherent difficulties attached to this problem, and the measurement of displacement is done by means of an experimental rig where a tooth is subjected to magnetic force acting over an air gap. Three experiments are carried out, each comprising ten tests, the results of which are compared in order to gain some idea as to the magnitudes of displacement which can be expected over a range of applied air gap flux densities. The aim of this work is to observe the displacement response of magnetised EM core material when acted upon by forces, and to see if the measured results agree with the elastic displacement predicted by a wellknown formula. It will be shown that although the measured results are in the same range as the predicted results, there is a deviation from the predicted linearity due to certain characteristics of the force rig, which are explained. The chosen measurement method is capacitive displacement and is shown to be a viable alternative to the more commonly used search coils and vibrometers in past literatures, especially when measuring displacements on the nano-scale. In addition, this study shows the importance of using 3D finite element software to simulate the electromagnetic model when saturation is present in the core of the test specimen. The important findings of this work are discussed in detail, and some ideas put forward, in an attempt to establish a starting point for future related work in the measurement of electromagnetic forceinduced displacement of stator teeth in electrical machines.
7

Occupant restraint modeling: Seat belt design

Patlu, Srikanth January 2001 (has links)
No description available.

Page generated in 0.1792 seconds