• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 67
  • 37
  • 35
  • 27
  • 25
  • 24
  • 18
  • 10
  • 10
  • 8
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 583
  • 108
  • 93
  • 47
  • 45
  • 45
  • 39
  • 38
  • 36
  • 36
  • 32
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Striated muscle action potential assessment as an indicator of cellular energetic state

Burnett, Colin Michael-Lee 01 May 2012 (has links)
Action potentials of striated muscle are created through movement of ions through membrane ion channels. ATP-sensitive potassium (KATP) channels are the only known channels that are gated by the intracellular energetic level ([ATP]/[ADP] ratio). KATP channels are both effectors and indicators of cellular metabolism as part of a negative feedback system. Decreased intracellular energetic level alters the gating of KATP channels, which is reflected in alterations of the action potential morphology. These changes protect the cell from exhaustion or injury by altering energy-consuming processes that are driven by membrane potential. Assessing the effects of KATP channel activation on resting membrane potential and action potential morphology, and the relationship to cellular stress is important to the understanding of normal cellular function. To better understand how muscle cells adapt to energetic stress, the monophasic action potential (MAP) electrode and floating microelectrode were used to record action potentials in intact hearts and skeletal muscles, respectively. Intact organs provide a more physiological environment for the study of energetics and membrane electrical phenomena. Utilizing these techniques, a stress on the intracellular energetic state resulted in greater and faster shortening of the duration of cardiac action potentials, and hyperpolarization of the membrane of skeletal muscle in a KATP channel dependent manner. Motion artifacts are a limitation to studying transmembrane action potentials, but the MAP and floating microelectrode techniques uniquely allow for reading of action potential morphology uncoupled from motion artifacts. The use of the floating microelectrode in skeletal muscles is a novel approach that provides previously unavailable data on skeletal muscle membrane potentials in situ.
202

Observation et modélisation des macro-déchets en mer Méditerranée, de la large échelle aux échelles côtière et littorale / Observation and modelling of the macro-waste in the Mediterranean Sea, from the large Scale to the coastal and local Scales

Mansui, Jérémy 14 December 2015 (has links)
L'objectif général de cette thèse est d'étudier les mécanismes de transport des déchets marins flottants ainsi queleur accumulation potentielle en Méditerranée, en s'appuyant sur la modélisation numérique de leur dérive ainsique sur des observations in-situ de leur distribution. La dynamique du transport des déchets marins y estnotamment analysée en terme d'échelles caractéristiques du bassin, en partant de la grande échelle jusqu'auxéchelles côtière et littorale.Dans un premier temps, l'examen d'un ensemble d'expériences Lagrangiennes numériques a permis d'identifierdans le bassin des zones probables d'accumulation non permanentes à grande échelle (Mansui et al., 2015a).L'impact à l'échelle côtière d'un courant de bord (Courant Nord) et des forçages atmosphériques sur ladistribution locale et l'échouage des déchets marins flottants a ensuite pu être estimé en utilisant notammentdes données originales recueillies en mer et à terre (Mansui et al., 2015b, en révision). / The main objective of this work is to study the floating marine debris transport mechanisms and their potentialaccumulation in the Mediterranean Sea, using numerical modelling and in-situ observations of debris. Thetransport dynamics is analysed in terms of typical scales in the basin, from the large scale to the coastal andlocal scales.First, the analysis of a Lagrangian experience data set show the potential existence of non-permanent and largeretention areas (Mansui et al., 2015a). In a second stage, the coastal impact of a boundary current (the NorthernCurrent) and atmospheric forcings on the local distribution and stranding of floating marine litter has beenestimated (Mansui et al., 2015b, under revision), using an original set of data combining offshore sightings andbeaching surveys.
203

Origin-centric techniques for optimising scalability and the fidelity of motion, interaction and rendering

Thorne, Chris January 2008 (has links)
[Truncated abstract] This research addresses endemic problems in the fields of computer graphics and simulation such as jittery motion, spatial scalability, rendering problems such as z-buffer tearing, the repeatability of physics dynamics and numerical error in positional systems. Designers of simulation and computer graphics software tend to map real world navigation rules onto the virtual world, expecting to see equivalent virtual behaviour. After all, if computers are programmed to simulate the real world, it is reasonable to expect the virtual behaviour to correspond. However, in computer simulation many behaviours and other computations show measurable problems inconsistent with realworld experience, particularly at large distances from the virtual world origin. Many of these problems, particularly in rendering, can be imperceptible, so users may be oblivious to them, but they are measurable using experimental methods. These effects, generically termed spatial jitter in this thesis, are found in this study to stem from floating point error in positional parameters such as spatial coordinates. This simulation error increases with distance from the coordinate origin and as the simulation progresses through the pipeline. The most common form of simulation error relevant to this study is spatial error which is found by this thesis to not be calculated, as may be expected, using numerical relative error propagation rules but using the rules of geometry. ... The thesis shows that the thinking behind real-world rules, such as for navigation, has to change in order to properly design for optimal fidelity simulation. Origincentric techniques, formulae, terms, architecture and processes are all presented as one holistic solution in the form of an optimised simulation pipeline. The results of analysis, experiments and case studies are used to derive a formula for relative spatial error that accounts for potential pathological cases. A formula for spatial error propagation is then derived by using the new knowledge of spatial error to extend numerical relative error propagation mathematics. Finally, analytical results are developed to provide a general mathematical expression for maximum simulation error and how it varies with distance from the origin and the number of mathematical operations performed. We conclude that the origin centric approach provides a general and optimal solution to spatial jitter. Along with changing the way one thinks about navigation, process guidelines and formulae developed in the study, the approach provides a new paradigm for positional computing. This paradigm can improve many aspects of computer simulation in areas such as entertainment, visualisation for education, industry, science, or training. Examples are: spatial scalability, the accuracy of motion, interaction and rendering; and the consistency and predictability of numerical computation in physics. This research also affords potential cost benefits through simplification of software design and code. These cost benefits come from some core techniques for minimising position dependent error, error propagation and also the simplifications and from new algorithms that flow naturally out of the core solution.
204

Inland Saline Aquaculture: Overcoming Biological and Technical Constraints Towards the Development of an Industry.

gavin.partridge@challengertafe.wa.edu.au, Gavin Partridge January 2008 (has links)
Secondary salinisation has rendered over 100 million hectares of land throughout the world, and over 5 million hectares in Australia, unsuitable for conventional agriculture. The utilization of salinised land and its associated water resources for mariculture is an adaptive approach to this environmental problem with many potential economic, social and environmental benefits. Despite this, inland mariculture is yet to develop into an industrial-scale, rural enterprise. The main aim of this study was therefore to identify and address some of the technical and biological limitations to the development of an inland finfish mariculture industry. Three technical aspects essential to the development of an Australian inland mariculture industry were reviewed; potential sources of water, the species suitable for culture in these water sources and the production systems available to produce them. Based on factors such as their quantity, quality and proximity to infrastructure, the most appropriate water sources were deemed to be groundwater obtained from interception schemes and waters from operational or disused mines. In terms of species, mulloway (Argyrosomus japonicus) were identified as having many positive attributes for inland mariculture, including being temperate and therefore having the ability to be cultured year-round in the regions where the majority of secondary salinity occurs. Seasonal production of barramundi (Lates calcarifer) in ponds in the temperate climatic zones has potential, but may be more appropriate for those salinised water sources located in the warmer parts of the country. Rainbow trout (Oncorhynchus mykiss) were also identified as having excellent potential provided water temperature can be maintained below the upper lethal limit and also have potential for seasonal production, perhaps in rotation with barramundi. In terms of production systems, pond-based culture methods were found to have many advantages specific to inland mariculture. Static ponds enable culture in areas with low groundwater yield and more cost-effective potassium supplementation compared with flow through ponds. Static ponds also largely overcome the issues associated with the disposal of salt-laden and eutrophied waste water; however yields from static ponds are typically low and limited by the nutrient input into the pond. In response to the yield constraints of static pond culture, a new culture technology known as the Semi-Intensive Floating Tank System (SIFTS) was designed, patented and constructed in collaboration with the aquaculture industry and tested in a static inland saline pond in the wheatbelt of Western Australia. This technology was designed to reduce nutrient input into ponds by the collection of settleable wastes and to provide large volumes of well-oxygenated water to the target species, to ameliorate the loss of fish from low dissolved oxygen during strong microalgal blooms. The three species identified above has having excellent potential for inland mariculture (mulloway, rainbow trout, and barramundi) were grown in SIFTS held within a 0.13 ha static, inland saline water body (salinity 14 ppt) over a period of 292 days, yielding the equivalent of 26 tonnes/ha/year (total for all three species). Rainbow trout were grown with an FCR of 0.97 from 83 to 697 grams over 111 days (SGR, 1.91%/day) between June and September, when average daily water temperatures ranged from 12.3„aC to 18.2„aC. Over the same time period, mulloway grew only from 100 to 116 grams, however, once temperatures increased to approximately 21„aC in October, feed intake increased and mulloway grew to an average size of 384 grams over 174 days with an SGR and FCR of 0.68 %/day and 1.39, respectively. Barramundi stocked in November with an average weight of 40 grams increased to 435 grams in 138 days (SGR 1.73%/day) with an FCR of 0.90. The SIFTS significantly reduced nutrient input into the pond by removing settleable wastes as a thick sludge with a dry matter content of 5 to 10%. The total quantity of dry waste removed over the 292 day culture period was 527 kg (5 tonnes/ha/yr), which was calculated to contain 15 kg of nitrogen (144 kg/ha/yr) and 16 kg of phosphorus (153 kg/ha/yr). The release of soluble nutrients into the pond resulted in blooms of macro- and micro- algae which caused large and potentially lethal diurnal fluctuations in dissolved oxygen within the pond, however, comparatively stable levels of dissolved oxygen were maintained within each SIFT through the use of air lift pumps. It is well documented that saline groundwater is deficient in potassium which, depending on the extent of the deficiency, can negatively impact on the performance of marine species, including fish. The physiological effects of this deficiency on fish, however, have not been previously described. As such, I conducted a bioassay investigating the physiological effects of a hypersaline (45 ppt) groundwater source containing 25% of the potassium found in equivalent salinity seawater (i.e. 25% K-equivalence) on juvenile barramundi. Histopathological examination of moribund fish revealed severe degeneration and necrosis of skeletal muscles, marked hyperplasia of branchial chloride cells and renal tubular necrosis. Clinical chemistry findings included hypernatraemia and hyperchloridaemia of the blood plasma and lowered muscle potassium levels. It was concluded from this study that the principal cause of death of these barramundi was skeletal myopathy induced by unsustainable buffering of blood plasma potassium levels from the muscle. Although such hypokalaemic muscle myopathies have been previously described in mammals and birds, this was the first description of such myopathies in fish. It was hypothesized from the results described above that the physiological effects of potassium deficiency are dependent on salinity and that they would be ameliorated by potassium supplementation. These predictions were tested in a subsequent study which measured the effects of potassium supplementation between 25% and 100% K-equivalence on the growth, survival and physiological response of juvenile barramundi at hyperosmotic (45 ppt), near-isosmotic (15 ppt) and hyposmotic (5 ppt) salinities. Unlike those juvenile barramundi reared at 45 ppt and 25% K-equivalence in the previous study, those reared in 50% K-equivalence water at 45 ppt in this study survived for four weeks but lost weight; whereas at 75% and 100% K-equivalences fish both survived and gained weight. Homeostasis of blood plasma potassium was maintained by buffering from skeletal muscle. Fish reared in 50% K-equivalence at this salinity exhibited muscle dehydration, increased branchial, renal and intestinal (Na+-K+)ATPase activity and elevated blood sodium and chloride, suggesting they were experiencing osmotic stress. At 15 ppt, equal rates of growth were obtained between all K-equivalence treatments. Buffering of plasma potassium by muscle also occurred but appeared to be in a state of equilibrium. Barramundi at 5 ppt displayed equal growth among treatments. At this salinity, buffering of plasma potassium from muscle did not occur and at 25% K-equivalence blood potassium was significantly lower than at all other K-equivalence treatments but with no apparent effect on growth, survival or (Na+-K+)ATPase activities. These data confirmed the hypothesis that proportionally more potassium is required at hyperosmotic salinities compared to iso- and hypo- osmotic salinities and also demonstrated that barramundi have a lower requirement for potassium than other marine and estuarine species being investigated for culture in inland saline groundwater. In addition to ongrowing fish, saline groundwater has potential for hatchery production. Specific advantages include the vertical integration of inland saline farms and the production of disease-free certified stock through isolation from the pathogens and parasites found naturally in coastal water. To determine the potential of utilizing inland saline groundwater for hatchery production, barramundi larvae were reared from 2 to 25 days post hatch in 14 ppt saline groundwater with either no potassium supplementation (38% K-equivalence) or full potassium supplementation (100% K-equivalence). Growth, survival and swimbladder inflation of these larvae were compared against those grown in control treatments of seawater (32 ppt) and seawater diluted to 14 ppt. Those reared in saline groundwater with 38% K-equivalence exhibited complete mortality within 2 days, whilst those held in groundwater with full supplementation survived at a rate equal to both control treatments (pooled average 51.1 ¡Ó 0.5%). At 25 days post hatch, there was no significant difference in larval length or dry weight between those grown in the 14 ppt control treatment and those in the saline groundwater with full potassium supplementation. There were no significant differences in swim bladder inflation between any of the surviving treatments (average 93.3 ¡Ó 2.5%). This is the first description of rearing barramundi larvae both in low salinity seawater and in saline groundwater, and demonstrates that the requirement for potassium by larval barramundi is higher than for juveniles of the same species. In addition to a deficiency in potassium, saline groundwater in Western Australia often contains an elevated concentration of manganese relative to seawater as a result of anaerobic reduction of manganese oxides or the pedogenic weathering of manganese-bearing rock. The effects of elevated manganese on marine or estuarine fish have not been described and a study was therefore conducted to determine if manganese, at a concentration typical of that found in saline groundwater, has any impact on fish. The effects of 5 mg/L of dissolved manganese on juvenile mulloway at salinities of 5, 15 and 45 ppt were determined by comparing the survival, growth and blood and organ chemistry with those grown at the same salinities without manganese addition. Survival of mulloway at 45 ppt in the presence of 5 mg/L of manganese (73 ¡Ó 13%) was significantly lower than all other treatments, which achieved 100% survival. Those fish grown in seawater without manganese exhibited rapid growth, which was not affected by salinity (SGR = 4.05 ¡Ó 0.29%/day). Those fish grown at 5 ppt and 45 ppt in the presence of manganese lost weight over the two week trial (SGR 0.17 ¡Ó 0.42 and -0.44 ¡Ó 0.83%/day, respectively), whilst those at 15 ppt gained only a small amount of weight (SGR 1.70 ¡Ó 0.20%/day). Growth was therefore affected by manganese and by the interaction of manganese and salinity, but not salinity alone. Manganese was found to accumulate in the gills, liver and muscle of the fish. No gill epithelial damage or other significant histological findings were found, however, significant differences in blood chemistry were observed. Blood sodium and chloride of manganese exposed fish were significantly elevated in hyperosmotic salinity (45 ppt) and depressed at hyposmotic salinity (5 ppt) compared with unexposed fish; consistent with manganese causing apoptosis or necrosis to chloride cells. Blood potassium was significantly elevated and liver potassium significantly reduced at all salinities in the presence of manganese. These findings are consistent with manganese interfering with carbohydrate metabolism. There were no differences in blood sodium, chloride or potassium across salinities in fish not exposed to manganese, demonstrating mulloway are capable of efficient osmoregulation across this salinity range.
205

Voice Codec for Floating Point Processor

Ross, Johan, Engström, Hans January 2008 (has links)
<p>As part of an ongoing project at the department of electrical engineering, ISY, at Linköping University, a voice decoder using floating point formats has been the focus of this master thesis. Previous work has been done developing an mp3-decoder using the floating point formats. All is expected to be implemented on a single DSP.The ever present desire to make things smaller, more efficient and less power consuming are the main reasons for this master thesis regarding the use of a floating point format instead of the traditional integer format in a GSM codec. The idea with the low precision floating point format is to be able to reduce the size of the memory. This in turn reduces the size of the total chip area needed and also decreases the power consumption.One main question is if this can be done with the floating point format without losing too much sound quality of the speech. When using the integer format, one can represent every value in the range depending on how many bits are being used. When using a floating point format you can represent larger values using fewer bits compared to the integer format but you lose representation of some values and have to round the values off.From the tests that have been made with the decoder during this thesis, it has been found that the audible difference between the two formats is very small and can hardly be heard, if at all. The rounding seems to have very little effect on the quality of the sound and the implementation of the codec has succeeded in reproducing similar sound quality to the GSM standard decoder.</p>
206

Performance and Energy Efficient Building Blocks for Network-on-Chip Architectures

Vangal, Sriram R. January 2006 (has links)
<p>The ever shrinking size of the MOS transistors brings the promise of scalable Network-on-Chip (NoC) architectures containing hundreds of processing elements with on-chip communication, all integrated into a single die. Such a computational fabric will provide high levels of performance in an energy efficient manner. To mitigate emerging wire-delay problem and to address the need for substantial interconnect bandwidth, packet switched routers are fast replacing shared buses and dedicated wires as the interconnect fabric of choice. With on-chip communication consuming a significant portion of the chip power and area budgets, there is a compelling need for compact, low power routers. While applications dictate the choice of the compute core, the advent of multimedia applications, such as 3D graphics and signal processing, places stronger demands for self-contained, low-latency floating-point processors with increased throughput. Therefore, this work focuses on two key building blocks critical to the success of NoC design: high performance, area and energy efficient router and floating-point processor architectures.</p><p>This thesis first presents a six-port four-lane 57 GB/s non-blocking router core based on wormhole switching. The router features double-pumped crossbar channels and destinationaware channel drivers that dynamically configure based on the current packet destination. This enables 45% reduction in crossbar channel area, 23% overall router area, up to 3.8X reduction in peak channel power, and 7.2% improvement in average channel power, with no performance penalty over a published design. In a 150nm six-metal CMOS process, the 12.2mm2 router contains 1.9 million transistors and operates at 1GHz at 1.2V. We next present a new pipelined single-precision floating-point multiply accumulator core (FPMAC) featuring a single-cycle accumulate loop using base 32 and internal carry-save arithmetic, with delayed addition techniques. Combined algorithmic, logic and circuit techniques enable multiply-accumulates at speeds exceeding 3GHz, with single-cycle throughput. Unlike existing FPMAC architectures, the design eliminates scheduling restrictions between consecutive FPMAC instructions. The optimizations allow removal of the costly normalization step from the critical accumulate loop and conditionally powered down using dynamic sleep transistors on long accumulate operations, saving active and leakage power. In addition, an improved leading zero anticipator (LZA) and overflow detection logic applicable to carry-save format is presented. In a 90nm seven-metal dual-VT CMOS process, the 2mm2 custom design contains 230K transistors. The fully functional first silicon achieves 6.2 GFLOPS of performance while dissipating 1.2W at 3.1GHz, 1.3V supply.</p><p>It is clear that realization of successful NoC designs require well balanced decisions at all levels: architecture, logic, circuit and physical design. Our results from key building blocks demonstrate the feasibility of pushing the performance limits of compute cores and communication routers, while keeping active and leakage power, and area under control.</p> / Report code: LiU-TEK-LIC-2006:36.
207

Effekt av biotopvård på öringpopulationen i två vattendrag

Sahlberg, Tony January 2010 (has links)
<p>I have done a follow up study of the restoration of two rivers, Röälven and Grundan, in order to evaluate the effects of the restoration on the endemic population of trout. Both rivers have been used for timber floating during many years throughout the 20<sup>th</sup> century, and because of this, had all obstacles such as rocks and wood parts removed. In 2004-2005 both rivers were restored, and rocks and wood were put back into the rivers. Spawning grounds were created and boulder dams were constructed to promote the streaming water. The result showed that the trout population of both rivers increased after the restoration, but also that the trout population of Röälven increased more than that of Grundan. My conclusion is that the way the restoration is of a river contributes to the result.</p>
208

Kernel-Based Data Mining Approach with Variable Selection for Nonlinear High-Dimensional Data

Baek, Seung Hyun 01 May 2010 (has links)
In statistical data mining research, datasets often have nonlinearity and high-dimensionality. It has become difficult to analyze such datasets in a comprehensive manner using traditional statistical methodologies. Kernel-based data mining is one of the most effective statistical methodologies to investigate a variety of problems in areas including pattern recognition, machine learning, bioinformatics, chemometrics, and statistics. In particular, statistically-sophisticated procedures that emphasize the reliability of results and computational efficiency are required for the analysis of high-dimensional data. In this dissertation, first, a novel wrapper method called SVM-ICOMP-RFE based on hybridized support vector machine (SVM) and recursive feature elimination (RFE) with information-theoretic measure of complexity (ICOMP) is introduced and developed to classify high-dimensional data sets and to carry out subset selection of the variables in the original data space for finding the best for discriminating between groups. Recursive feature elimination (RFE) ranks variables based on the information-theoretic measure of complexity (ICOMP) criterion. Second, a dual variables functional support vector machine approach is proposed. The proposed approach uses both the first and second derivatives of the degradation profiles. The modified floating search algorithm for the repeated variable selection, with newly-added degradation path points, is presented to find a few good variables while reducing the computation time for on-line implementation. Third, a two-stage scheme for the classification of near infrared (NIR) spectral data is proposed. In the first stage, the proposed multi-scale vertical energy thresholding (MSVET) procedure is used to reduce the dimension of the high-dimensional spectral data. In the second stage, a few important wavelet coefficients are selected using the proposed SVM gradient-recursive feature elimination (RFE). Fourth, a novel methodology based on a human decision making process for discriminant analysis called PDCM is proposed. The proposed methodology consists of three basic steps emulating the thinking process: perception, decision, and cognition. In these steps two concepts known as support vector machines for classification and information complexity are integrated to evaluate learning models.
209

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
210

Determinants of Success for Community-based Tourism: The Case of Floating Markets in Thailand

Vajirakachorn, Thanathorn 2011 August 1900 (has links)
Community involvement has been promoted and studied in diverse disciplines including planning, geography, community development, and others. In the tourism field, the shift from conventional tourism toward sustainable forms of tourism which emphasizes community-based practices in planning, development, and management has been broadly encouraged, especially in the developing world. Variously labeled, but commonly identified as Community-based tourism (CBT), this form of tourism is considered essential for community development, with an ultimate goal of sustainable development. Although many destinations have attempted to translate the CBT concept into practice, its appropriateness and success has been questioned and debated among practitioners and scholars. This research explores how members of local communities evaluate the CBT success factors discussed in the tourism literature. These factors include: 1) community participation, 2) benefit sharing, 3) tourism resources conservation, 4) partnership and support from within and outside of the community, 5) local ownership, 6) management and leadership, 7) communication and interaction among stakeholders, 8) quality of life, 9) scale of tourism development, and 10) tourist satisfaction. The main objectives of this study are: 1) developing an integrative measurement scales to evaluate the success of a CBT destination, 2) identifying the determinants of success as perceived by local communities at a CBT destination, and 3) examining the differences in CBT success factors between two communities relative to the duration and scale of tourism development, and size of the community. This dissertation employed mixed methods, combining questionnaire interviews, in-depth qualitative interviews, and participant observation as data collection tools. The fieldwork was conducted in Thailand during February – June 2010. Amphawa and Bangnoi floating markets were evaluated based on the ten factors. Results show that Amphawa, a larger and longer developed destination, is more successful than Bangnoi, a smaller and newly developed destination. Findings also indicated that the ten factors are important determinants of the success of tourism development in the two communities. Additional factors that the communities identified were advertising and the use of media as well as social networks. The integration of success factors reported in this study is recommended as a guideline for improvements in CBT development and evaluation.

Page generated in 0.0595 seconds