Spelling suggestions: "subject:"blood frequency analysis"" "subject:"floor frequency analysis""
11 |
A New Mathematical Framework for Regional Frequency Analysis of FloodsBasu, Bidroha January 2015 (has links) (PDF)
Reliable estimates of design flood quantiles are often necessary at sparsely gauged/ungauged target locations in river basins for various applications in water resources engineering. Development of effective methods for use in this task has been a long-standing challenge in hydrology for over five decades.. Hydrologists often consider various regional flood frequency analysis (RFFA) approaches that involve (i) use of regionalization approach to delineate a homogeneous group of watersheds resembling watershed of the target location, and (ii) use of a regional frequency analysis (RFA) approach to transfer peak flow related information from gauged watersheds in the group to the target location, and considering the information as the basis to estimate flood quantile(s) for the target site. The work presented in the thesis is motivated to address various shortcomings/issues associated with widely used regionalization and RFA approaches.
Regionalization approaches often determine regions by grouping data points in multidimensional space of attributes depicting watershed’s hydrology, climatology, topography, land-use/land-cover and soils. There are no universally established procedures to identify appropriate attributes, and modelers use subjective procedures to choose a set of attributes that is considered common for the entire study area. This practice may not be meaningful, as different sets of attributes could influence extreme flow generation mechanism in watersheds located in different parts of the study area. Another issue is that practitioners usually give equal importance (weight) to all the attributes in regionalization, though some attributes could be more important than others in influencing peak flows. To address this issue, a two-stage clustering approach is developed in the thesis. It facilitates identification of appropriate attributes and their associated weights for use in regionalization of watersheds in the context of flood frequency analysis. Effectiveness of the approach is demonstrated through a case study on Indiana watersheds.
Conventional regionalization approaches could prove effective for delineating regions when data points (depicting watersheds) in watershed related attribute space can be segregated into disjoint groups using straight lines or linear planes. They prove ineffective when (i) data points are not linearly separable, (ii) the number of attributes and watersheds is large, (iii) there are outliers in the attribute space, and (iv) most watersheds resemble each other in terms of their attributes. In real world scenario, most watersheds resemble each other, and regions may not always be segregated using straight lines or linear planes, and dealing with outliers and high-dimensional data is inevitable in regionalization. To address this, a fuzzy support vector clustering approach is proposed in the thesis and its effectiveness over commonly used region-of-influence approach, and different cluster analysis based regionalization methods is demonstrated through a case study on Indiana watersheds. For the purpose of regional frequency analysis (RFA), index-flood approach is widely used over the past five decades. Conventional index-flood (CIF) approach assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real world scenario, this assumption may not be valid even if a region is statistically homogeneous. Logarithmic index-flood (LIF) and population index-flood (PIF) methodologies were proposed to address the problem, but even those methodologies make unrealistic assumptions. PIF method assumes that the ratio of scale to location parameters is a constant for all the sites in a region. On the other hand, LIF method assumes that appropriate frequency distribution to fit peak flows could be found in log-space, but in reality the distribution of peak flows in log space may not be closer to any of the known theoretical distributions. To address this issue, a new mathematical approach to RFA is proposed in L-moment and LH-moment frameworks that can overcome shortcomings of the CIF approach and its related LIF and PIF methods that make various assumptions but cannot ensure their validity in RFA. For use with the proposed approach, transformation mechanisms are proposed for five commonly used three-parameter frequency distributions (GLO, GEV, GPA, GNO and PE3) to map the random variable being analyzed from the original space to a dimensionless space where distribution of the random variable does not change, and deviations of regional estimates of all the distribution’s parameters (location, scale, shape) with respect to their population values as well as at-site estimates are minimal. The proposed approach ensures validity of all the assumptions of CIF approach in the dimensionless space, and this makes it perform better than CIF approach and related LIF and PIF methods. Monte-Carlo simulation experiments revealed that the proposed approach is effective even when the form of regional frequency distribution is mis-specified. Case study on watersheds in conterminous United States indicated that the proposed approach outperforms methods based on index-flood approach in real world scenario.
In recent decades, fuzzy clustering approach gained recognition for regionalization of watersheds, as it can account for partial resemblance of several watersheds in watershed related attribute space. In working with this approach, formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix. But, currently there are no effective procedures available for discerning the information. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies, but it results in under-prediction of quantiles. To address this, a mathematical approach is proposed in the thesis that allows discerning information from fuzzy-membership matrix derived using fuzzy clustering approach for effective quantile estimation. Effectiveness of the approach in estimating flood quantiles relative to DFA and TS was demonstrated through Monte-Carlo simulation experiments and case study on mid-Atlantic water resources region, USA.
Another issue with index flood approach and its related RFA methodologies is that they assume linear relationship between each of the statistical raw moments (SMs) of peak flows and watershed related attributes in a region. Those relationships form the basis to arrive at estimates of SMs for the target ungauged/sparsely gauged site, which are then utilized to estimate parameters of flood frequency distribution and quantiles corresponding to target return periods. In reality, non-linear relationships could exist between SMs and watershed related attributes. To address this, simple-scaling and multi-scaling methodologies have been proposed in literature, which assume that scaling (power law) relationship exists between each of the SMs of peak flows at sites in a region and drainage areas of watersheds corresponding to those sites. In real world scenario, drainage area alone may not completely describe watershed’s flood response. Therefore flood quantile estimates based on the scaling relationships can have large errors. To address this, a recursive multi-scaling (RMS) approach is proposed that facilitates construction of scaling (power law) relationship between each of the SMs of peak flows and a set of site’s region-specific watershed related attributes chosen/identified in a recursive manner. The approach is shown to outperform index-flood based region-of-influence approach, simple-and multi-scaling approaches, and a multiple linear regression method through leave-one-out cross validation experiment on watersheds in and around Indiana State, USA.
The conventional approaches to flood frequency analysis (FFA) are based on the assumption that peak flows at the target site represent a sample of independent and identically distributed realization drawn from a stationary homogeneous stochastic process. This assumption is not valid when flows are affected by changes in climate and/or land use/land cover, and regulation of rivers through dams, reservoirs and other artificial diversions/storages. In situations where evidence of non-stationarity in peak flows is strong, it is not appropriate to use quantile estimates obtained based on the conventional FFA approaches for hydrologic designs and other applications. Downscaling is one of the options to arrive at future projections of flows at target sites in a river basin for use in FFA. Conventional downscaling methods attempt to downscale General Circulation Model (GCM) simulated climate variables to streamflow at target sites. In real world scenario, correlation structure exists between records of streamflow at sites in a study area. An effective downscaling model must be parsimonious, and it should ensure preservation of the correlation structure in downscaled flows to a reasonable extent, though exact reproduction/mimicking of the structure may not be necessary in a climate change (non-stationary) scenario. A few recent studies attempted to address this issue based on the assumption of spatiotemporal covariance stationarity. However, there is dearth of meaningful efforts especially for multisite downscaling of flows. To address this, multivariate support vector regression (MSVR) based methodology is proposed to arrive at flood return levels (quantile estimates) for target locations in a river basin corresponding to different return periods in a climate change scenario. The approach involves (i) use of MSVR relationships to downscale GCM simulated large scale atmospheric variables (LSAVs) to monthly time series of streamflow at multiple locations in a river basin, (ii) disaggregation of the downscaled streamflows corresponding to each site from monthly to daily time scale using k-nearest neighbor disaggregation methodology, (iii) fitting time varying generalized extreme value (GEV) distribution to annual maximum flows extracted from the daily streamflows and estimating flood return levels for different target locations in the river basin corresponding to different return periods.
|
12 |
Hydrogrammes synthétiques par bassin et types d'événements. Estimation, caractérisation, régionalisation et incertitude / Catchment- and event-type specific synthetic design hydrographs. Estimation, characterization, regionalization, and uncertaintyBrunner, Manuela 29 January 2018 (has links)
L'estimation de crues de projet est requise pour le dimensionnement de barrages et de bassins de rétention, de même que pour la gestion des inondations lors de l’élaboration de cartes d’aléas ou lors de la modélisation et délimitation de plaines d’inondation. Généralement, les crues de projet sont définies par leur débit de pointe à partir d’une analyse fréquentielle univariée. Cependant, lorsque le dimensionnement d’ouvrages hydrauliques ou la gestion de crues nécessitent un stockage du volume ruisselé, il est également nécessaire de connaître les caractéristiques volume, durée et forme de l’hydrogramme de crue en plus de son débit maximum. Une analyse fréquentielle bivariée permet une estimation conjointe du débit de pointe et du volume de l’hydrogramme en tenant compte de leur corrélation. Bien qu’une telle approche permette la détermination du couple débit/volume de crue, il manque l’information relative à la forme de l’hydrogramme de crue. Une approche attrayante pour caractériser la forme de la crue de projet est de définir un hydrogramme représentatif normalisé par une densité de probabilité. La combinaison d’une densité de probabilité et des quantiles bivariés débit/volume permet la construction d’un hydrogramme synthétique de crue pour une période de retour donnée, qui modélise le pic d’une crue ainsi que sa forme. De tels hydrogrammes synthétiques sont potentiellement utiles et simples d’utilisation pour la détermination de crues de projet. Cependant, ils possèdent actuellement plusieurs limitations. Premièrement, ils reposent sur la définition d’une période de retour bivariée qui n’est pas univoque. Deuxièmement, ils décrivent en général le comportement spécifique d’un bassin versant en ne tenant pas compte de la variabilité des processus représentée par différents types de crues. Troisièmement, les hydrogrammes synthétiques ne sont pas disponibles pour les bassins versant non jaugés et une estimation de leurs incertitudes n’est pas calculée.Pour remédier à ces manquements, cette thèse propose des avenues pour la construction d’hydrogrammes synthétiques de projet pour les bassins versants jaugés et non jaugés, de même que pour la prise en compte de la diversité des types de crue. Des méthodes sont également développées pour la construction d’hydrogrammes synthétiques de crue spécifiques au bassin et aux événements ainsi que pour la régionalisation des hydrogrammes. Une estimation des diverses sources d’incertitude est également proposée. Ces travaux de recherche montrent que les hydrogrammes synthétiques de projet constituent une approche qui s’adapte bien à la représentation de différents types de crue ou d’événements dans un contexte de détermination de crues de projet. Une comparaison de différentes méthodes de régionalisation montre que les hydrogrammes synthétiques de projet spécifiques au bassin peuvent être régionalisés à des bassins non jaugés à l’aide de méthodes de régression linéaires et non linéaires. Il est également montré que les hydrogrammes de projet spécifiques aux événements peuvent être régionalisés à l’aide d’une approche d’indice de crue bivariée. Dans ce contexte, une représentation fonctionnelle de la forme des hydrogrammes constitue un moyen judicieux pour la délimitation de régions ayant un comportement hydrologique de crue similaire en terme de réactivité. Une analyse de l’incertitude a montré que la longueur de la série de mesures et le choix de la stratégie d’échantillonnage constituent les principales sources d’incertitude dans la construction d’hydrogrammes synthétiques de projet. Cette thèse démontre qu’une approche de crues de projet basée sur un ensemble de crues permet la prise en compte des différents types de crue et de divers processus. Ces travaux permettent de passer de l’analyse fréquentielle statistique de crues vers l’analyse fréquentielle hydrologique de crues permettant de prendre en compte les processus et conduisant à une prise de décision plus éclairée. / Design flood estimates are needed in hydraulic design for the construction of dams and retention basins and in flood management for drawing hazard maps or modeling inundation areas. Traditionally, such design floods have been expressed in terms of peak discharge estimated in a univariate flood frequency analysis. However, design or flood management tasks involving storage, in addition to peak discharge, also require information on hydrograph volume, duration, and shape . A bivariate flood frequency analysis allows the joint estimation of peak discharge and hydrograph volume and the consideration of their dependence. While such bivariate design quantiles describe the magnitude of a design flood, they lack information on its shape. An attractive way of modeling the whole shape of a design flood is to express a representative normalized hydrograph shape as a probability density function. The combination of such a probability density function with bivariate design quantiles allows the construction of a synthetic design hydrograph for a certain return period which describes the magnitude of a flood along with its shape. Such synthetic design hydrographs have the potential to be a useful and simple tool in design flood estimation. However, they currently have some limitations. First, they rely on the definition of a bivariate return period which is not uniquely defined. Second, they usually describe the specific behavior of a catchment and do not express process variability represented by different flood types. Third, they are neither available for ungauged catchments nor are they usually provided together with an uncertainty estimate.This thesis therefore explores possibilities for the construction of synthetic design hydrographs in gauged and ungauged catchments and ways of representing process variability in design flood construction. It proposes tools for both catchment- and flood-type specific design hydrograph construction and regionalization and for the assessment of their uncertainty.The thesis shows that synthetic design hydrographs are a flexible tool allowing for the consideration of different flood or event types in design flood estimation. A comparison of different regionalization methods, including spatial, similarity, and proximity based approaches, showed that catchment-specific design hydrographs can be best regionalized to ungauged catchments using linear and nonlinear regression methods. It was further shown that event-type specific design hydrograph sets can be regionalized using a bivariate index flood approach. In such a setting, a functional representation of hydrograph shapes was found to be a useful tool for the delineation of regions with similar flood reactivities.An uncertainty assessment showed that the record length and the choice of the sampling strategy are major uncertainty sources in the construction of synthetic design hydrographs and that this uncertainty propagates through the regionalization process.This thesis highlights that an ensemble-based design flood approach allows for the consideration of different flood types and runoff processes. This is a step from flood frequency statistics to flood frequency hydrology which allows better-informed decision making.
|
13 |
Flood Hazard Assessment in Data-Scarce Basins : Use of alternative data and modelling techniques / Riskbedömning av översvämning i avrinningsområden med dålig datatillgång : Användning av alternativa data och modelleringsverktygFuentes-Andino, Diana January 2017 (has links)
Flooding is of great concern world-wide, causing damage to infrastructure, property and loss of life. Low-income countries, in particular, can be negatively affected by flood events due to their inherent vulnerabilities. Moreover, data to perform studies for flood risk management in low-income regions are often scarce or lacking sufficient quality. This thesis proposes new methodologies and explores the use of unconventional sources of information in flood hazard assessment in areas where the quantity or sufficient quality of traditional hydrometrical data are lacking. One method was developed to account for errors in spatially averaged rainfall, from a sparse rain-gauge network, used as input to a rainfall-runoff model. A spatially-averaged and event-dependent rainfall depth multiplier led to improvements of the hydrographs at calibration. And by using a distribution of the multiplier, identified from previous events in the catchment, improvement in predictions could also be obtained. A second method explored the possibility of reproducing an unmeasured extreme flood event using a combination of models, post-event data, precipitation and an uncertainty-analysis framework. This combination allowed the identification of likelihood-associated parameter sets from which the flood hazard map for the extreme event could be obtained. A third and fourth study made at the regional scale explored the value of catchment similarities, and the effects of climate on the hydrological response of catchments. Flood frequency curves were estimated for 36 basins, assumed ungauged, using regional information of short flow records, and local information about the frequency of the storm. In the second regional study, hydro-climatic information provided great value to constrain predictions of series of daily flow from a hydrological model. Previously described methods, used in combination with unconventional information within an uncertainty analysis, proven to be useful for flood hazard assessment at basins with data limitations. The explored data included: post-event measurements of an extreme flood event, hydro-climate regional information and local precipitation data. The methods presented in this thesis are expected to support development of hydrological studies underpinning flood-risk reduction in data-poor areas. / Extremt höga vattenflöden ställer till stora problem i hela världen. De skadar infrastruktur och egendom och orsakar död. Framför allt kan låg- och medelinkomstländer vara väldigt sårbara för extrema flöden. I dessa länder saknas dessutom ofta data som behövs för att kunna bedöma översvämningsrisker, eller så finns bara data av dålig kvalitet. Denna avhandling föreslår nya metoder som använder okonventionella informationskällor vid bedömning av översvämningsrisker i områden där traditionella hydrologiska data saknas eller har otillräcklig kvalitet. En metod utvecklades för att ta hänsyn till fel i rumslig medelnederbörd beräknad från ett glest nät av nederbördsmätare att användas som indata i en nederbörds-avrinningsmodell. Användning av en multiplikator för medelvärdesbildad nederbörd, i tid och rum, för enskilda högflödestillfällen ledde till förbättrad modellkalibrering. Genom att använda multiplikatorfördelningar, identifierade från tidigare högflödestillfällen i avrinningsområdet, kunde också prognoser förbättras. En andra metod använde sig av möjligheten att reproducera ett extremt högflöde inom ramen för en osäkerhetsanalys med hjälp av en kombination av modeller, nederbördsdata och data som uppmätts i efterhand. Denna kombination gjorde det möjligt att identifiera parametervärdesuppsättningar med hophörande sannolikheter ur vilka det gick att erhålla en översvämningskarta för det höga flödet. En tredje och fjärde studie i regional skala utforskade värdet av likheter mellan avrinningsområden och hur områdenas hydrologiska gensvar beror av klimatet. Kurvan för kumulativa högflödesfrekvenser (flood frequency curve, FFC) kunde skattas med hjälp av lokal nederbördsinformation och regional information om korta tidsserier av vattenföring från 36 avrinningsområden som antogs sakna vattenföringsdata. I den andra regionala studien visade sig hydroklimatisk information av värde för att avgränsa godtagbara prognoser för daglig vattenföring från en hydrologisk modell. Tidigare beskrivna metoder, använda tillsammans med okonventionell information inom ramen för en osäkerhetsanalys, visade sig vara användbara för att bedöma översvämningsrisker i avrinningsområden med databegränsningar. Bland utforskade data fanns: mätningar i efterhand av ett extremt högflöde, hydroklimatisk regional information och lokala nederbördsmätningar. Metoderna i denna avhandling förväntas kunna stödja utvecklingen av hydrologiska studier av höga flöden och översvämningar i områden med bristande datatillgång. / Las inundaciones ocasionan daños a la infraestructura, propiedad y pérdida de vidas a nivel mundial. Los países en desarrollo son los más vulnerables a inundaciones, la calidad y cantidad de datos hidro-climatológicos disponibles en los mismos dificulta el desarrollo de estudios para la evaluación de riesgo a esta amenaza. Esta tesis propone métodos en la que se hace uso de fuentes de información no-convencionales para la evaluación de riesgo por inundación en regiones con datos escasos o limitados. Un método considera el error asociado a la precipitación promedio sobre cuencas en modelos lluvia-escorrentía como un factor multiplicador del histograma del evento. El uso de la precipitación promedio junto con una distribución probabilística del factor multiplicador como datos de entrada a un modelo de lluvia-escorrentía mejoraron los hidrogramas durante los periodos de calibración y predicción. Un segundo método exploró la posibilidad de reproducir un evento extremo de inundación usando una combinación de modelos hidrológicos e hidráulico, un análisis de incertidumbre, datos hidrométricos recopilados después del evento y datos de precipitación registrados durante-el-evento. Dicha combinación permitió la identificación de los parámetros de los modelos y la elaboración un mapa de amenaza por inundaciones para dicho evento. Adicionalmente, se estimaron curvas de frecuencia de inundaciones para 36 cuencas, asumidas no aforadas, mediante un método de regionalización que usa registros de caudal de corta duración disponibles en la región. Dichas curvas fueron extendidas haciendo uso de información local sobre la frecuencia de las tormentas. Se encontró que la información hidro-climatológica tiene un gran valor para reducir el rango de incertidumbre de las simulaciones de caudal diaria de un modelo hidrológico. Los métodos anteriores se usaron en combinación con información no-convencional dentro de un análisis de incertidumbre y han probado su utilidad para la evaluación de riesgo por inundaciones en cuencas con registros escasos o limitados. Los datos utilizados en esta tesis incluyen datos hidrométricos recopilados pasado el evento, registros hidro-climatológicos regionales y precipitación local. Se espera que los métodos presentados aquí contribuyan al desarrollo de estudios hidrológicos importantes para la reducción del riesgo por inundaciones en regiones con déficit de registros hidro-climatológicos.
|
Page generated in 0.0719 seconds